



Abstract— Hubel Wiesel models, successful in visual

processing algorithms, have only recently been used in

conceptual representation. Despite the biological plausibility of

a Hubel-Wiesel like architecture for conceptual memory and

encouraging preliminary results, there is no implementation of

how inputs at each layer of the hierarchy should be integrated

for processing by a given module, based on the correlation of

the features. In our paper, we propose the input integration

framework – a set of operations performed on the inputs to the

learning modules of the Hubel Wiesel model of conceptual

memory. These operations weight the modules as being general

or specific and therefore determine how modules can be

correlated when fed to parents in the higher layers of the

hierarchy. Parallels from Psychology are drawn to support our

proposed framework. Simulation results on benchmark data

show that implementing local correlation corresponds to the

process of early concept generalization to reveal the broadest

coherent distinctions of conceptual patterns. Finally, we applied

the improved model iteratively over two sets of data, which

resulted in the generation of finer grained categorizations,

similar to progressive differentiation. Based on our results, we

conclude that the model can be used to explain how humans

intuitively fit a hierarchical representation for any kind of data.

I. INTRODUCTION

ONCEPT representation is one of the primary tasks of

human cognition. Categorization and generalization of

new concepts are part of concept representation.

Computationally, it is assumed that generalization of new

concepts is based on their correlation with prior concepts.

This leads to categorization judgments that can be used for

induction. In recent years, research in computational

cognitive science has served to reveal much about the

process of concept generalization [1-3].

The idea of feature based concept acquisition has been

well studied in psychological literature. Sloutsky [10]

discusses how children group concepts based on, not just

one, but multiple similarities, which tap the fact that those

basic level categories have correlated structures (or features).

This correlation of features is also discussed in McClelland

and Rogers [1,2] who argue that information should be

stored at the individual concept level rather than at the super

ordinate category level allowing properties to be shared by

many items.

Mountcastle [13], showed that parts of the cortical system

Sepideh Sadeghi (sp.sadeghi@gmail.com) and Kiruthika Ramanathan

(kiruthika_r@dsi.a-star.edu.sg) are from the Data Storage Institute, Science

and Engineering Research Council, Agency for Science, Technology and

Research, A-STAR,

are organized in a hierarchy and that some regions are

hierarchically above others. David Hubel and Torsten Wiesel

showed that the hierarchical architecture consists of neurons

in the higher levels of the visual cortex representing more

complex features with neurons in the IT representing objects

or object parts [14]. Computational Hubel Wiesel models

have therefore been developed for object recognition [7, 15]

proposing a hierarchy of feature extracting simple (S) and

complex (C) cells that allow for positional invariance. The

combination of S-cells and C-cells, whose signals propagate

up the hierarchy allows for scale and position invariant

object recognition.

In a recent work Ramanathan et al [4] have extended

Hubel Wiesel models of the visual cortex [5, 6] to model

concept representation. The resulting architecture, trained

using competitive learning units arranged in a modular,

hierarchical fashion, shares some properties with the Parallel

Distributed Processing model of semantic cognition [1]. To

our knowledge, this is the first implementation of a Hubel

Wiesel approach to non-natural medium such as text, and has

attempted to model hierarchical representation of keywords

to form concepts.

Their model exploits the S and C cell configuration of

Hubel Wiesel models by implementing a bottom up,

modular, hierarchical structure of concept acquisition and

representation, which lays a possible framework for how

concepts are represented in the cortex.

However, we observe that there is a gap between this

model and Hubel Wiesel models of vision [5, 7]. The model

ignores the existence of local correlation between the inputs

of neighboring learning modules. In visual Hubel Wiesel

models, the input features integrated in the learning modules

are locally correlated (neighboring dots composing a small

tile of the input image and neighboring tiles of the input

image composing a bigger tile). Therefore, in such models,

there exists a coherent generalization over small to big parts

of the picture from bottom to top of the hierarchy. No local

correlation is implemented in Ramanathan et al [4].

Local correlation, the phenomenon where neighboring

neurons in the brain process similar information, ensures

category coherence while economizing wiring length [8]. In

models of vision, where the Hubel Wiesel architecture is

widely used, applying local correlation is intuitive, by

integrating neighboring tiles of information. If we assume

that the brain uses a hierarchical Hubel Wiesel-like

architecture to represent concepts, it is important to account

A Hubel Wiesel Model of Early Concept Generalization Based on

Local Correlation of Input Features

Sepideh Sadeghi, Kiruthika Ramanathan

C

mailto:sp.sadeghi@gmail.com
mailto:kiruthika_r@dsi.a-star.edu.sg

for this local correlation factor.

In this paper, we propose a model for local correlation of

inputs, such that neighboring neurons in the Hubel Wiesel

model of conceptual memory process similar information.

This model, which we call the input integration framework,

results in coherent categorizations corresponding to the

broadest distinctions in the data, reminiscent of the

properties of early concept differentiation. When the input

integration framework is integrated with the Hubel Wiesel

model, and the model applied iteratively, we observe finer

distinctions of categories, similar to progressive

differentiation.

 We adopt the following terminologies. Given a set of

categories generated based on the conceptual (input)

features:

1. Category coherence [9] refers to the quality of a category

being natural, intuitive and useful for inductive inferences.

In our model, this is obtained by preserving local correlation

of features through the hierarchy.

2. Concept differentiation is the ability of the system to

distinguish between categories of concepts through the firing

of different neurons. It is known that early concept

differentiations are broader than later ones and they undergo

a continuous change over time [1]. Our model assumes that

the changes in the input integration framework of

hierarchical memories are one of the sources of progressive

differentiation of concepts.

II. HYPOTHESIS

 Representative features of a category can be qualitatively

regarded as general or specific [1]. General features are more

commonly perceived among the members of the category.

On the other hand, specific features are only associated with

specific members of the category. Therefore, general features

are better representatives of a category compared with

specific ones. Subsequently, In the process of generalization,

general features are weighted over specific features. Sloutsky

et al [10] examine the underlying mechanism of early

induction (generalization) in light of comparing the role of

appearance similarity
1
 and kind information

2
. They conclude

that early induction is more biased towards the appearance

features rather than kind information features. Based on their

findings and the details of their experiments, we hypothesize

the following:

1. In early generalization, the more frequently perceived

prior features are regarded as general.

2. Weighting general features over specific ones (less

frequently perceived features) leads to the detection of

the broad distinctions of the observed patterns in the

1 Visual similarities
2 Hand coded labeling rules to be used for categorization and induction

of hidden attributes of a set of bug like patterns designed by the authors.

Use of these labeling rules needed the children to compare the number of

fingers with the number of buttons in each pattern. Use of labeling rules

were designed to devise a different categorization from the one devised by

appearance similarity.

domain of the subject’s prior knowledge (known

features).

 A parallel can be drawn between these hypotheses and

Sloutsky’s work [10] in that the frequently perceived

appearance inputs being regarded as general features are

weighted over kind information being regarded as specific

features, making categorization biased towards appearance

similarity.

III. SYSTEM DESIGN AND ARCHITECTURE

A. Architecture

 The system that we describe here is organized in a bottom

up hierarchy. This means that the conceptual features are

represented before the representation of conceptual patterns.

Our learning algorithm exploits the property of this

hierarchical structure. Each level in the hierarchy has several

modules. These modules model cortical regions of concept

memory. The modules are arranged in a tree structure,

having several children and one parent. In our paper, we call

the bottom most level of the hierarchy level 1, and the level

increases as one moves up the hierarchy. Each conceptual

pattern is defined as a binary vector of conceptual features,

where 1 encodes relevance and 0 encodes irrelevance of the

corresponding feature to the target pattern. A matrix of all

the pattern vectors is directly fed to level 1 as the input.

Level 1 modules resemble simple cells of the cortex, in that

they receive their inputs from a small patch of the input

space. In our model, the input features are distributed

amongst the modules at Level 1. Several level 1 modules tile

the feature space. A module at level 2 covers more of the

feature space when compared to a level 1 module. It

represents the union of the feature space of all its child level

1 modules. A level 2 module obtains its inputs only through

its level 1 children. This pattern is repeated in the hierarchy.

Thus, the module at the tree root (the top most level) covers

the entire feature space, but it does so by pooling the inputs

from its child modules. In the visual cortex, the level 1 can

be considered analogous to the area V1 of the cortex, level 2

to area V2 and so on.

B. Bottom up learning in hierarchical architectures

 To understand how the model learns, let us consider the

inputs and outputs of a single module mk,i in level k of the

system as shown in Figure 1a. Let x, representing

connections {xj} be the input pattern to the module mk,i. x is

the output of the child modules of mk,i from the level k-1, and

a represent the weights of the competitive network. The

vector a is used to represent the connections {aj} between x

and the neurons in the module mk,i - neuron weight. The

output of a neuron in mk,i in response to an input {aj}, is 1 if

the Euclidean distance between its weight vector and the

input is the least compared with other neurons in the module.

Otherwise, the output would be zero. The outputs of the

neurons being 0 or 1 are called activation values.

During learning, each neuron in mk,i competes with other

neurons in the vicinity. Of the large number of inputs to a

given module, a neuron is activated by a subset of them

using a winner takes all mechanism. The neuron then

becomes the spatial center of these patterns. To ensure that

there are no garbage neurons, we adopt in our creation of the

module, a model of Growing SOM (GSOM) [11].

(a) (b)

Figure 1a. Inputs and outputs to a single module mk,i. b. The

concatenation of information from the child modules of the

hierarchy to generate inputs for the parent module

When all the modules at level k finish training, the

subsequent stage of learning occurs. This comprises the

process by which the parent modules learn from the outputs

of the child modules. Here, consider the case shown in

Figure 1b where module 3 is the parent of modules 1 and 2.

Let x(1) be the output vector of module 1 and x(2) be the

output vector of module 2. x(i) represents a vector of

activation values being the outputs of the neurons in the child

modules. The input to module 3, , is the

concatenation of the outputs of modules 1 and 2. A particular

concatenation represents a simultaneous occurrence of a

combination of concepts in the child module. Depending on

the statistics of the input data, some combinations will occur

more frequently, while others will not. During this stage of

learning, the parent module learns the most frequent

combinations of concepts in the levels below it. A GSOM is

again used in the clustering of such combinations. The

learning process thus defined can be repeated in a

hierarchical manner.

C. Local correlation model

 We propose a model of local correlation of features which

implements our hypothesis in the context of the Hubel

Wiesel conceptual memory proposed in Ramanathan et al

[4]. Our model accomplishes two tasks through the bottom

up hierarchy. (a) It marks the inputs of each layer of the

hierarchy as general or specific and (b) It biases the

categorization of each module on the basis of its general

inputs.

 The inputs of the model at the bottom most layer are

vectors of conceptual features and at the intermediate layers

are vectors of activation values generated by the neurons of

the child modules. In order to mark the inputs as general or

specific, we first need to weight the generality of each input.

In this endeavor, we define two parameters: a) feature

weight: to weight the generality of the conceptual features at

the bottom layer, and b) module weight: computed for each

child module in the hierarchy to weight the generality of its

output activation values input to a parent module. In this case

all the activation values output from a module would be

equally weighted by the computed weight value for the

module when being input to the parent module.

 In each module, the input vectors and the weight vectors of

the neurons are of the same dimension. For each element

(feature/activation value) being a member of input vector,

there is a weight value which will be incorporated to the

model as a coefficient magnifying or trivializing the

similarity of the given element in the input vector and the

corresponding element in the neuron weight. Therefore

feature/module weights are different from the neuron weights

that are used for training. However they determine what are

the most important elements of the neuron weight vector,

which need to be similar to the elements in the input vector

for the neuron to be activated.

 Let where ,

 represents an input pattern such that,

 and , is 1 if the

feature is present in and 0 otherwise. The Presence

Number Nj for each feature is

 (1)

The feature weight for each input feature and module

weight wm for each module within the hierarchy is defined as

follows.

 (2)

We compute wm for a module as a function of its input

weights. Two different operations for computing wm are

presented and compared in our paper – sum-weights and

max-weight.

Where M represents the modules at level p-1 of the

hierarchy, the sum-weights operation defines wm at level p as

 (3)

Whereas the max-weight operation evaluates as

 (4)

The max-weight operation is expected to have a greater bias

of the results towards general features and broader

categorizations than the sum-weights operation.

D. Marking features/ modules as general or specific

 The weight value of each feature or module represents its

generality or specificity as seen by the system. In short, the

higher the weight value, the more general the

feature/module. The pseudo code below is used to label a

set of features/modules as being general or specific,

depending on the user defined parameters τ (for feature

marking) and (for module marking), , where τ and are

greater than or equal to 1.

Mark features/modules as general_specific()

1. Sort the features/modules in a decreasing order on the basis of their

weights and push them into the queue Q

2. while ~(isEmpty(Q))

 a. Pop τ/μ features/modules from the front of Q and push them into

the queue G (general features/modules)

 b. pop one feature/module from the rear of Q and push it into the

queue S (specific features/modules)

E. Generalization

 In the process of generalization across the hierarchy, our

model weights general features/modules over specific ones

by performing two main operations – input management and

prioritization.

 Input management ensures that the number of general

features/modules input to each module of the hierarchy is

greater or at least equal to the number of specific

features/modules. The following pseudo code explains input

management at the most bottom layer of the hierarchy with

τ=2. Let represent the number of features per

module. encodes the number of available features

in the queue S, including unused specific features. Biasing

the generalization of a pattern towards its general features

occurs in the modules of the hierarchy. Therefore, to ensure

the relative weight down of the specific features of a pattern

to its general features, it is desired to capture both specific

and general features of a pattern in the same module. Hence,

it is desired to input specific features into a module which

shares a pattern with a general feature already added to the

module. This is performed by which

returns a Boolean indicating whether there is any pattern in

which the values of the feature and at least one of the

previously added features of the module are one. The

performance is dependent on the number of input

features/children per module (user defined parameters) and

the values of τ .
Input features to the Module(nFeature)

1. if (isOdd(nFeature))

 a. pop one feature from the rear of the queue G and push it into

the Module

2. for i=1:floor(nFeature/2)

 a. pop one feature from the front of the queue G and push it into the

Module

 b. if ~(isEmpty(S))

 i. feature = Pop specific(Module)

 ii. push feature into the Module

 c. else

 i. pop one feature from the rear of the queue G and push it

into the Module

Pop specific(Module)

1.added = 0

2. for i= nSpecific:-1:1

 a. if (sharedPattern(Module,S(i)))

 i. pop S(i) from the queue S and push it into the Module

 ii.added = 1

 iii. break

3. if ~(added)

 a. pop one feature from the rear of the queue S and push it into the

Module

 Prioritization is a weighted similarity measure that

interferes in the process of similarity measurement of the

conceptual patterns. In our paper, we define the similarity of

any two concepts as the Euclidean distance between the

representative neurons
3
. The prioritization operation

magnifies or trivializes the similarity values of the pair-wise

elements in the neuron weights and the input vector on the

basis of their corresponding input weights. From equation 5,

we can observe that the similarity values of general features

with high feature weights would be more significant in the

process selection of similar concepts and generalization. In

equation 5, and sNum represent the number of

general and specific features in the module respectively, such

that The indices P and C refer to the

pattern (input vector) and the cluster (neuron weight vector).

 (5)

IV. EXPERIMENTS

 Every feature in a dataset can divide the pattern space of

the data into two separate categories. Our model is to weight

the corresponding categories of general features over

specific features in the process of categorization. On this

basis, two types of data unique structured and multiple

structured can be discussed.

 We call a data unique structured if, for every two general

features and from the database, where
ij ww  , one the

following conditions hold. Under first condition, both

features should categorize the pattern space similarly. Under

second condition, should not divide the pattern space of

more than one of the categories created on the basis of . A

unique structured data displays a binary hierarchical

structure. In contrast, a data which does not fit a binary

hierarchical structure or might possibly fit in multiple binary

hierarchies would not hold any of conditions above and is

regarded as multiple structured data. In the context of this

article we call a data unique structured if the top most

categorization (focusing on the broadest distinctions) of the

patterns is unique in all different hierarchies corresponding

to the data. Correspondingly, if different hierarchies of the

data demonstrate contradicting categorizations at the top

most level, we call the data multiple structured.

Table 1, illustrates three sets of data that have been

applied in this paper to test the model. In all the experiments,

the parameter ‘τ’ is equal to 2 and the parameter ‘ ’ is equal

to 1 (each parent module is fed with one general module and

one specific module).

3 As can be seen from equation 5, the effect of prioritization can be

observed only when an integration of pair-wise feature similarity is used to

measure concept similarity.

Table 1: Datasets used in the simulations

Label Source Data

type

Remarks

Set A McClelland

et al, 2004

Unique Whole set

Set B McClelland

et al, 2004

Multiple Patterns: only animals

Features: all – {‘has

legs’}

Set C Kemp et al,

2008

Multiple Whole set

A. Generalization

 Figure 2 illustrates the contribution of local correlation to

the categorization results of the Hubel Wiesel conceptual

memory over Set A and Set C. We tested the model under

different hierarchical structures, initialized by different

number of modules and different number of features per

module at the bottom of the hierarchy. As can be seen the

local correlation operations, regardless of the structure of the

hierarchy and the type of the dataset (unique structured or

multiple structured), successfully biases the categorization

towards a broad coherent categorization. The resulted

categorization over both set A and set C corresponds to the

broadest biological distinction of their patterns. The

categorization over set A reveals two basic kingdoms of

patterns and the categorization over set C reveals two

phylums of animals (Arthropods versus ~ Arthropods).

Based on our results, when local correlation model is not

included, the categorization of data is incoherent and also

alternates per runtime.

B. Categorization operations and computational

parameters

 In this section, we compare the categorization performance

of the sum-weights and max-weight operations with respect

to the effect of different computational parameters. Growth

threshold [11] is a computational parameter used in the

learning modules of our model. This parameter controls the

growth of the neurons (categories) inside a module by

applying a threshold on the distance values of the input

patterns and the closest existing neuron weight in the

module. If the corresponding distance value for an input

pattern is larger than the threshold, a new neuron will be

initialized in the modules. Therefore, lower values of growth

threshold facilitate the generation of more number of

categories and consequently finer distinctions within the

corresponding module.

 Figures 3 and 4 illustrate the effect of the growth threshold

over set A and set C. The specific categories obtained by

applying two different correlation operations and various

thresholds to the multiple structured set B, is shown in

Tables 2 and 3.

Figure 2: (a) the most frequent outcome categorization of

dataset A by local correlation model – successful

categorization. (b) Illustrating the probability of successful

categorization over set A, being obtained in a set of trials

using sum-weights, max-weight and no correlation model

under different hierarchies of learning. Each probability

demonstrates the ratio of the number successful

categorizations obtained over 10 trials carried out using a

specific correlation operation and under specific hierarchy of

learning(c) the most frequent categorization of dataset C by

local correlation model – successful categorization. (d)

Illustrating the probability of successful categorization over

set C, being obtained in a set of trials using sum-weights and

max-weight operations under different hierarchies of

learning. Each probability is computed in the same way as

explained in (b).

 According to Figure 2.b, Figure 3, Tables 2 and 3,

regardless of the hierarchical structure, type of data and

growth threshold values, the max-weight operation is always

more significant than sum-weights in biasing the

categorization. As can be seen, this conclusion is admitted by

higher probability values reported for max-weight dominant

categorizations in comparison with those reported for sum-

weights.

Figure 3: The probability of categorization in Figure 2.a over

dataset A. A comparison of sum-weights and max-weight

under different growth thresholds (8 learning modules at the

bottom layer)

Figure 4: The probability of categorization in Figure 2.c over

dataset C. using max-weight operation under different

growth thresholds in different hierarchical structures.

As can be seen in Figure 3, using sum-weights over a

unique structured data, probability of getting broad

distinctions decreases with the decrease of growth threshold.

However, this probability stays robust when using max-

weight operation. On the other hand, according to Figure 4,

applying max-weight over a multiple structured data,

probability of getting broad distinctions does not stay robust

against changes in growth threshold. It is also important to

notice that in this case, the probability of getting broad

distinctions does not necessarily decrease with the decrease

of the growth threshold (Figure 4, 51 modules). This

evidence, suggests that the geometry of the hierarchy is

another effective factor that along with growth threshold and

the structure of data influences the broadness and possibly

coherence of the resultant categorization.

 According to Tables 2 and 3, using max-weight operation

over a multiple structured data the dominant categorization

gets finer and more coherent (naturally descriptive of data)

with the decrease of growth threshold. It is also noticeable

that the same effect is not observed using sum-weights.

C. Building hierarchical structures of data

 In this section we use the max-weight in a top-down

hierarchical manner to build a binary hierarchical structure

of the data. Given a dataset, we first apply the model over

whole data (the root node of the hierarchy) which results in

the creation of several categories. Each of these categories -

containing a portion of input patterns and a set of features

with variant values among the patterns of the category - is

Table 2: The effect of growth threshold on the quality of

categorization biasing, using max-weight operation over

dataset B (7 modules at the bottom layer).

Growth

threshold

The most probable

categorization (Dominant

Categorization)

Probability of

the dominant

categorization

0.5 Categorization1 100%

0.05 Categorization 2 60%

0.005 Categorization 3 60%

Categorization 1: (robin, canary, sparrow, sunfish, salmon,

flounder, cod), (dog, cat, mouse, goat, pig, penguin)

Categorization 2: (robin, canary, sparrow, sunfish, salmon,

flounder, cod), (dog, cat, mouse, goat, pig), (penguin)

Categorization 3: (sunfish, salmon, flounder, cod), (robin,

canary, sparrow), (dog, cat, mouse, goat, pig), (penguin)

Table 3: The effect of growth threshold on the quality of

categorization biasing, using sum-weights operation over

dataset B (7 modules at the bottom layer).

Growth

threshold

The most probable

categorization (Dominant

Categorization)

Probability of

the dominant

categorization

0.5 Categorization4 50%

0.05 Categorization 5 40%

0.005 Categorization 6 40%

Categorization 4: (sunfish, flounder, cod, cat, mouse,

penguin, robin, canary, sparrow), (salmon, dog, goat, pig)

Categorization 5: (sunfish, salmon, flounder, cod, dog, cat,

mouse, goat, pig), (robin, canary, sparrow, penguin)

Categorization 6: (sunfish, salmon, flounder, cod, dog, cat,

mouse, goat, pig), (robin, canary, sparrow, penguin)

regarded as a new dataset (nodes branching from the root

node). We apply the model over new datasets (subsets of

patterns in a category) iteratively until the desired depth and

breadth of the hierarchy in different branches is reached.

The results of applying this procedure over dataset A, and

dataset C are provided in Figure 6. It is important to note that

changing the growth threshold of the model can change the

resulted categorization and the number of categories (the

number of branches stemming from the corresponding node).

Therefore our model is not only limited to binary

hierarchical structures and by changing the growth threshold

of the model over a category (node) at level and branch of

the hierarchy, we can change the emergent hierarchical

structure stemming from that particular node.

We assume that humans are capable of performing

categorization and subsequently labeling over any given set

of patterns represented in the format of feature data [3].

Since, category labels can always be organized into

hierarchies [12], therefore regardless of the underlying

structural form of the data [3], human mind is considered to

be capable of fitting any given feature data into a

hierarchical structure. For example, geographical places are

naturally organized in a spherical structural form, while

human mind is capable of projecting geographical data in

hierarchical structure through developing and using concepts

like continent, country, state, and city. In other words, we

assume that one of the cognitive properties of human mind is

the ability to build hierarchical structure for any given

feature data which makes it able to develop abstract but not

necessarily natural knowledge about its environment.

 Furthermore, it can be discussed that the same set of

entities can be represented within different structural forms

each of which captures a different aspect of the relationship

among the entities. For example, the temporal relationship

among seasons, months, and weeks can be captured within

cycles while their spatial relationship can be represented in

hierarchies (Figure 5). Additionally, different spatial

representations of the data within a given structural form

reflect different levels of the abstraction of the patterns’

relationship. For instance, we can categorize the whole set of

animal entities into predators and ~ predators or we can first

categorize them into mammals, birds and subsequently

categorize each of these categories into predators and ~

predators instances.

Figure 5: Temporal (cycle) and spatial (hierarchy)

relationships of seasons and months

V. CONCLUSIONS

 In summary, we propose an input integration framework

for a Hubel Wiesel conceptual memory to bias the

generalization process such that it contributes to the

categorization of concepts in two ways. First, it increases the

probability of obtaining a unique, coherent categorization. .

Second, it improves the probability of achieving the broadest

distinction (the quality of early concept differentiation due to

progressive differentiation phenomena [1]) of the data.

Assuming that changes in input integration framework of a

hierarchical memory is one of the sources of the progressive

differentiation of concepts, further work is in progress to

simulate the later developments of the progressive concept

differentiation (detection of finer distinctions) on the basis of

prior broad distinctions and smooth changes over the input

integration framework.

 Two operations were designed to perform integration:

max-weight and sum-weights. The potential performance of

these operations have been studied and compared under

different situations including, different hierarchical

structures, different growth thresholds, and different types of

input data. These two operations are different in the way they

handle the strength of biasing the categorization towards

general features. The quality of features being general or

specific is subject to continuous change upon receiving new

inputs – new features and new patterns. Therefore, it is

Figure 6: (a) Hierarchical structure of dataset A. (b)

Hierarchical structure of dataset C

questionable whether or not max-weight operation which

gives a very high weight to the detected general features

within a single entry might be a brain-like operation.

Though, our simulations show that the max-weight operation

produces more coherent results which are also consistent

with the expected broad distinctions perceived in early

childhood. May be in early stages of learning, an operation

like max-weight is used to perceive broad distinctions and

build the basic wirings in the brain. While, later a more

moderate operation like sum-weights is used which does not

bias the categorization as strongly as max-weight does.

 Our model can be also used to fit any given feature data

into a hierarchical structure and provides a possible

explanation on how human mind assigns a hierarchical

structure to a given data.

REFERENCES

[1] J. L McClelland and T. T Rogers, The parallel distributed

processing approach to semantic cognition. Nature Reviews

Neuroscience, vol. 4, pp310-322, 2003

[2] T. T Rogers and J. L. McClelland Précis of Semantic

Cognition, A parallel distributed processing approach. Brain

and Behavioral Sciences, vol.31, pp689-749, 2008

[3] C Kemp and J. B. Tenenbaum. The discovery of structural

form. Proceedings of the National Academy of Science, vol.

105 no.31, pp10687-10692, 2008

[4] K Ramanathan et al., A Hubel Wiesel model for

hierarchical representation of concepts in textual documents.

The Annual Meeting of the Cognitive Society (COGSCI,)

pp1106-1111, 2010

[5] T. Serre et al., Object recognition with cortex-like

mechanisms, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 29 no.3, pp411-426, 2007

[6] Reisenhuber M and Poggio T, Hierarchical models of object

recognition in cortex, Nature Neuroscience, vol. 2 no.11,

pp1019-1025, 1999

[7] C. Cadieu et al., A Model of V4 Shape Selectivity and

Invariance. Journal of Neurophysiology vol. 98, pp1733-

1750, 2007

[8] C Koch, The Quest for Consciousness, A Neurobiological

Approach, Roberts and Company Publishers, 2004

[9] G. Lmurphy and D.LMedin. The role of theories in

conceptual coherence. Psychological review, vol. 92, pp289-

316, 1985

[10] V.M Sloutsky et al., When looks are everything:

appearance similarity versus kind information in early

induction. Psychological Science, vol. 18 no. 2, pp179-185,

2007
[11] D Alahakhoon et al., Dynamic Self Organizing maps with

controlled growth for Knowledge discovery, IEEE

Transactions on neural networks, vol. 11 no.3, pp601-614,

2000

[12] E Rosch. Principles of categorization. Cognition and

Categorization, eds Rosch E, LIoyd BB (Lawrence Erlbaum,

New York), pp. 27-48, 1978.

[13] Mountcastle V, An Organizing Principle for Cerebral

Function: The Unit Model and the Distributed System, The

Mindful Brain (Gerald M. Edelman and Vernon B.

Mountcastle, eds.) Cambridge, MA: MIT Press, (1978)

[14] Hubel D and Wiesel T, Receptive fields and functional

architecture in two non striate visual areas (18 and 19) of a

cat, Journal of NeuroPhysiology vol. 28, pp229-289, 1965

[15] K Fukushima, Neocognitron for handwritten digit

recognition 1, Neurocomputing , vol. 51 no. C, pp161-180,

2003

