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Abstract— Hubel Wiesel models, successful in visual 

processing algorithms, have only recently been used in 

conceptual representation. Despite the biological plausibility of 

a Hubel-Wiesel like architecture for conceptual memory and 

encouraging preliminary results, there is no implementation of 

how inputs at each layer of the hierarchy should be integrated 

for processing by a given module, based on the correlation of 

the features. In our paper, we propose the input integration 

framework – a set of operations performed on the inputs to the 

learning modules of the Hubel Wiesel model of conceptual 

memory. These operations weight the modules as being general 

or specific and therefore determine how modules can be 

correlated when fed to parents in the higher layers of the 

hierarchy. Parallels from Psychology are drawn to support our 

proposed framework. Simulation results on benchmark data 

show that implementing local correlation corresponds to the 

process of early concept generalization to reveal the broadest 

coherent distinctions of conceptual patterns. Finally, we applied 

the improved model iteratively over two sets of data, which 

resulted in the generation of finer grained categorizations, 

similar to progressive differentiation. Based on our results, we 

conclude that the model can be used to explain how humans 

intuitively fit a hierarchical representation for any kind of data. 

I. INTRODUCTION 

ONCEPT representation is one of the primary tasks of 

human cognition. Categorization and generalization of 

new concepts are part of concept representation. 

Computationally, it is assumed that generalization of new 

concepts is based on their correlation with prior concepts. 

This leads to categorization judgments that can be used for 

induction. In recent years, research in computational 

cognitive science has served to reveal much about the 

process of concept generalization [1-3]. 

The idea of feature based concept acquisition has been 

well studied in psychological literature. Sloutsky [10] 

discusses how children group concepts based on, not just 

one, but multiple similarities, which tap the fact that those 

basic level categories have correlated structures (or features). 

This correlation of features is also discussed in McClelland 

and Rogers [1,2] who argue that information should be 

stored at the individual concept level rather than at the super 

ordinate category level allowing properties to be shared by 

many items. 

Mountcastle [13], showed that parts of the cortical system 
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are organized in a hierarchy and that some regions are 

hierarchically above others. David Hubel and Torsten Wiesel 

showed that the hierarchical architecture consists of neurons 

in the higher levels of the visual cortex representing more 

complex features with neurons in the IT representing objects 

or object parts [14].  Computational Hubel Wiesel models 

have therefore been developed for object recognition [7, 15] 

proposing a hierarchy of feature extracting simple (S) and 

complex (C) cells that allow for positional invariance. The 

combination of S-cells and C-cells, whose signals propagate 

up the hierarchy allows for scale and position invariant 

object recognition.   

In a recent work Ramanathan et al [4] have extended 

Hubel Wiesel models of the visual cortex [5, 6] to model 

concept representation. The resulting architecture, trained 

using competitive learning units arranged in a modular, 

hierarchical fashion, shares some properties with the Parallel 

Distributed Processing model of semantic cognition [1]. To 

our knowledge, this is the first implementation of a Hubel 

Wiesel approach to non-natural medium such as text, and has 

attempted to model hierarchical representation of keywords 

to form concepts. 

Their model exploits the S and C cell configuration of 

Hubel Wiesel models by implementing a bottom up, 

modular, hierarchical structure of concept acquisition and 

representation, which lays a possible framework for how 

concepts are represented in the cortex.  

However, we observe that there is a gap between this 

model and Hubel Wiesel models of vision [5, 7]. The model 

ignores the existence of local correlation between the inputs 

of neighboring learning modules. In visual Hubel Wiesel 

models, the input features integrated in the learning modules 

are locally correlated (neighboring dots composing a small 

tile of the input image and neighboring tiles of the input 

image composing a bigger tile).  Therefore, in such models, 

there exists a coherent generalization over small to big parts 

of the picture from bottom to top of the hierarchy. No local 

correlation is implemented in Ramanathan et al [4]. 

Local correlation, the phenomenon where neighboring 

neurons in the brain process similar information, ensures 

category coherence while economizing wiring length [8].  In 

models of vision, where the Hubel Wiesel architecture is 

widely used, applying local correlation is intuitive, by 

integrating neighboring tiles of information. If we assume 

that the brain uses a hierarchical Hubel Wiesel-like 

architecture to represent concepts, it is important to account 

A Hubel Wiesel Model of Early Concept Generalization Based on 

Local Correlation of Input Features  

Sepideh Sadeghi, Kiruthika Ramanathan 

C 

mailto:sp.sadeghi@gmail.com
mailto:kiruthika_r@dsi.a-star.edu.sg


 

 

 

for this local correlation factor.  

In this paper, we propose a model for local correlation of 

inputs, such that neighboring neurons in the Hubel Wiesel 

model of conceptual memory process similar information. 

This model, which we call the input integration framework, 

results in coherent categorizations corresponding to the 

broadest distinctions in the data, reminiscent of the 

properties of early concept differentiation. When the input 

integration framework is integrated with the Hubel Wiesel 

model, and the model applied iteratively, we observe finer 

distinctions of categories, similar to progressive 

differentiation.  

 We adopt the following terminologies. Given a set of 

categories generated based on the conceptual (input) 

features: 

1. Category coherence [9] refers to the quality of a category 

being natural, intuitive and useful for inductive inferences.  

In our model, this is obtained by preserving local correlation 

of features through the hierarchy. 

2.  Concept differentiation is the ability of the system to 

distinguish between categories of concepts through the firing 

of different neurons.  It is known that early concept 

differentiations are broader than later ones and they undergo 

a continuous change over time [1].  Our model assumes that 

the changes in the input integration framework of 

hierarchical memories are one of the sources of progressive 

differentiation of concepts.  

 

II. HYPOTHESIS 

   Representative features of a category can be qualitatively 

regarded as general or specific [1]. General features are more 

commonly perceived among the members of the category. 

On the other hand, specific features are only associated with 

specific members of the category. Therefore, general features 

are better representatives of a category compared with 

specific ones. Subsequently, In the process of generalization, 

general features are weighted over specific features. Sloutsky 

et al [10] examine the underlying mechanism of early 

induction (generalization) in light of comparing the role of 

appearance similarity
1
 and kind information

2
. They conclude 

that early induction is more biased towards the appearance 

features rather than kind information features. Based on their 

findings and the details of their experiments, we hypothesize 

the following: 

1. In early generalization, the more frequently perceived 

prior features are regarded as general.  

2. Weighting general features over specific ones (less 

frequently perceived features) leads to the detection of 

the broad distinctions of the observed patterns in the 

 
1 Visual similarities 
2 Hand coded labeling rules to be used for categorization and induction 

of hidden attributes of a set of bug like patterns designed by the authors. 

Use of these labeling rules needed the children to compare the number of 

fingers with the number of buttons in each pattern. Use of labeling rules 

were designed to devise a different categorization from the one devised by 

appearance similarity. 

domain of the subject’s prior knowledge (known 

features).   

   A parallel can be drawn between these hypotheses and 

Sloutsky’s work [10] in that the frequently perceived 

appearance inputs being regarded as general features are 

weighted over kind information being regarded as specific 

features, making categorization biased towards appearance 

similarity. 

III. SYSTEM DESIGN AND ARCHITECTURE 

A. Architecture 

   The system that we describe here is organized in a bottom 

up hierarchy. This means that the conceptual features are 

represented before the representation of conceptual patterns. 

Our learning algorithm exploits the property of this 

hierarchical structure. Each level in the hierarchy has several 

modules. These modules model cortical regions of concept 

memory. The modules are arranged in a tree structure, 

having several children and one parent. In our paper, we call 

the bottom most level of the hierarchy level 1, and the level 

increases as one moves up the hierarchy. Each conceptual 

pattern is defined as a binary vector of conceptual features, 

where 1 encodes relevance and 0 encodes irrelevance of the 

corresponding feature to the target pattern. A matrix of all 

the pattern vectors is directly fed to level 1 as the input. 

Level 1 modules resemble simple cells of the cortex, in that 

they receive their inputs from a small patch of the input 

space. In our model, the input features are distributed 

amongst the modules at Level 1. Several level 1 modules tile 

the feature space. A module at level 2 covers more of the 

feature space when compared to a level 1 module. It 

represents the union of the feature space of all its child level 

1 modules. A level 2 module obtains its inputs only through 

its level 1 children. This pattern is repeated in the hierarchy. 

Thus, the module at the tree root (the top most level) covers 

the entire feature space, but it does so by pooling the inputs 

from its child modules. In the visual cortex, the level 1 can 

be considered analogous to the area V1 of the cortex, level 2 

to area V2 and so on. 

 

B. Bottom up learning in hierarchical architectures 

   To understand how the model learns, let us consider the 

inputs and outputs of a single module mk,i in level k of the 

system as shown in Figure 1a. Let x, representing 

connections {xj} be the input pattern to the module mk,i. x is 

the output of the child modules of mk,i from the level k-1, and 

a represent the weights of the competitive network. The 

vector a is used to represent the connections {aj} between x 

and the neurons in the module mk,i - neuron weight. The 

output of a neuron in mk,i in response to an input {aj}, is 1 if 

the Euclidean distance between its weight vector and the 

input is the least compared with other neurons in the module. 

Otherwise, the output would be zero. The outputs of the 

neurons being 0 or 1 are called activation values. 

During learning, each neuron in mk,i competes with other 

neurons in the vicinity. Of the large number of inputs to a 



 

 

 

given module, a neuron is activated by a subset of them 

using a winner takes all mechanism. The neuron then 

becomes the spatial center of these patterns. To ensure that 

there are no garbage neurons, we adopt in our creation of the 

module, a model of Growing SOM (GSOM) [11].  

 

  
(a) (b) 

Figure 1a.  Inputs and outputs to a single module mk,i. b. The 

concatenation of information from the child modules of the 

hierarchy to generate inputs for the parent module 

 

When all the modules at level k finish training, the 

subsequent stage of learning occurs. This comprises the 

process by which the parent modules learn from the outputs 

of the child modules. Here, consider the case shown in 

Figure 1b where module 3 is the parent of modules 1 and 2. 

Let x(1) be the output vector of module 1 and x(2) be the 

output vector of module 2. x(i) represents a vector of 

activation values being the outputs of the neurons in the child 

modules. The input to module 3, , is the 

concatenation of the outputs of modules 1 and 2. A particular 

concatenation represents a simultaneous occurrence of a 

combination of concepts in the child module. Depending on 

the statistics of the input data, some combinations will occur 

more frequently, while others will not. During this stage of 

learning, the parent module learns the most frequent 

combinations of concepts in the levels below it. A GSOM is 

again used in the clustering of such combinations. The 

learning process thus defined can be repeated in a 

hierarchical manner.  

C. Local correlation model 

   We propose a model of local correlation of features which 

implements our hypothesis in the context of the Hubel 

Wiesel conceptual memory proposed in Ramanathan et al 

[4]. Our model accomplishes two tasks through the bottom 

up hierarchy. (a) It marks the inputs of each layer of the 

hierarchy as general or specific and (b) It biases the 

categorization of each module on the basis of its general 

inputs. 

   The inputs of the model at the bottom most layer are 

vectors of conceptual features and at the intermediate layers 

are vectors of activation values generated by the neurons of 

the child modules. In order to mark the inputs as general or 

specific, we first need to weight the generality of each input. 

In this endeavor, we define two parameters: a) feature 

weight: to weight the generality of the conceptual features at 

the bottom layer, and b) module weight: computed for each 

child module in the hierarchy to weight the generality of its 

output activation values input to a parent module. In this case 

all the activation values output from a module would be 

equally weighted by the computed weight value for the 

module when being input to the parent module.  

   In each module, the input vectors and the weight vectors of 

the neurons are of the same dimension. For each element 

(feature/activation value) being a member of input vector, 

there is a weight value which will be incorporated to the 

model as a coefficient magnifying or trivializing the 

similarity of the given element in the input vector and the 

corresponding element in the neuron weight. Therefore 

feature/module weights are different from the neuron weights 

that are used for training. However they determine what are 

the most important elements of the neuron weight vector, 

which need to be similar to the elements in the input vector 

for the neuron to be activated. 

 

   Let  where   , 

 represents an input pattern such that, 

 and  ,  is 1 if the 

feature is present in and 0 otherwise. The Presence 

Number Nj for each feature  is 

 

           (1) 

 

The feature weight  for each input feature and module 

weight wm for each module within the hierarchy is defined as 

follows. 
                                                                                                           

                  (2)  

 

We compute wm for a module as a function of its input 

weights. Two different operations for computing wm are 

presented and compared in our paper – sum-weights and 

max-weight. 

 

Where M represents the modules at level p-1 of the 

hierarchy, the sum-weights operation defines wm at level p as 

  

                (3) 

 

Whereas the max-weight operation evaluates as   

 

      (4) 

 

The max-weight operation is expected to have a greater bias 

of the results towards general features and broader 

categorizations than the sum-weights operation.  

 

D. Marking features/ modules as general or specific 

   The weight value of each feature or module represents its 

generality or specificity as seen by the system. In short, the 

higher the weight value, the more general the 

feature/module.  The pseudo code below is used to label a 

set of features/modules as being general or specific, 

depending on the user defined parameters τ (for feature 



 

 

 

marking) and  (for module marking), , where τ and   are 

greater than or equal to 1. 

 
Mark features/modules as general_specific() 

1. Sort the features/modules in a decreasing order on the basis of their 

weights and push them into the queue Q 

2. while ~(isEmpty(Q)) 

   a. Pop τ/μ  features/modules from the front of  Q and push them into 

the queue G (general features/modules)  

   b. pop one feature/module from the rear of Q and push it into the 

queue S (specific features/modules) 

 

E. Generalization 

   In the process of generalization across the hierarchy, our 

model weights general features/modules over specific ones 

by performing two main operations – input management and 

prioritization. 

   Input management ensures that the number of general 

features/modules input to each module of the hierarchy is 

greater or at least equal to the number of specific 

features/modules. The following pseudo code explains input 

management at the most bottom layer of the hierarchy with 

τ=2. Let  represent the number of features per 

module.  encodes the number of available features 

in the queue S, including unused specific features. Biasing 

the generalization of a pattern towards its general features 

occurs in the modules of the hierarchy. Therefore, to ensure 

the relative weight down of the specific features of a pattern 

to its general features, it is desired to capture both specific 

and general features of a pattern in the same module. Hence, 

it is desired to input specific features into a module which 

shares a pattern with a general feature already added to the 

module.  This is performed by  which 

returns a Boolean indicating whether there is any pattern in 

which the values of the feature  and at least one of the 

previously added features of the module are one. The 

performance is dependent on the number of input 

features/children per module (user defined parameters) and 

the values of τ  . 
Input features to the Module(nFeature) 

1. if (isOdd(nFeature)) 

            a. pop one feature from the rear of the queue G and push it into 

the Module 

2. for i=1:floor(nFeature/2) 

       a. pop one feature from the front of the queue G and push it into the 

Module 

      b.  if ~(isEmpty(S)) 

              i. feature = Pop specific(Module) 

              ii. push feature into the Module  

      c. else 

               i. pop one feature from the rear of the queue G and push it 

into the Module 

Pop specific(Module) 

1.added = 0 

2. for i= nSpecific:-1:1 

      a. if (sharedPattern(Module,S(i))) 

 i. pop S(i) from the queue S and push it into the Module 

            ii.added = 1 

            iii. break 

3. if ~(added) 

      a. pop one feature from the rear of the queue S and push it into the 

Module  

   Prioritization is a weighted similarity measure that 

interferes in the process of similarity measurement of the 

conceptual patterns. In our paper, we define the similarity of 

any two concepts as the Euclidean distance between the 

representative neurons
3
. The prioritization operation 

magnifies or trivializes the similarity values of the pair-wise 

elements in the neuron weights and the input vector on the 

basis of their corresponding input weights. From equation 5, 

we can observe that the similarity values of general features 

with high feature weights would be more significant in the 

process selection of similar concepts and generalization. In 

equation 5,  and sNum represent the number of 

general and specific features in the module respectively, such 

that  The indices P and C refer to the 

pattern (input vector) and the cluster (neuron weight vector). 

 

       (5)  

 

IV. EXPERIMENTS 

   Every feature in a dataset can divide the pattern space of 

the data into two separate categories. Our model is to weight 

the corresponding categories of general features over 

specific features in the process of categorization. On this 

basis, two types of data unique structured and multiple 

structured can be discussed. 

    

   We call a data unique structured if, for every two general 

features  and  from the database, where 
ij ww  , one the 

following conditions hold. Under first condition, both 

features should categorize the pattern space similarly. Under 

second condition,  should not divide the pattern space of 

more than one of the categories created on the basis of . A 

unique structured data displays a binary hierarchical 

structure. In contrast, a data which does not fit a binary 

hierarchical structure or might possibly fit in multiple binary 

hierarchies would not hold any of conditions above and is 

regarded as multiple structured data. In the context of this 

article we call a data unique structured if the top most 

categorization (focusing on the broadest distinctions) of the 

patterns is unique in all different hierarchies corresponding 

to the data. Correspondingly, if different hierarchies of the 

data demonstrate contradicting categorizations at the top 

most level, we call the data multiple structured. 

 

Table 1, illustrates three sets of data that have been 

applied in this paper to test the model. In all the experiments, 

the parameter ‘τ’ is equal to 2 and the parameter ‘ ’ is equal 

to 1 (each parent module is fed with one general module and 

one specific module). 

 

 

 
3 As can be seen from equation 5, the effect of prioritization can be 

observed only when an integration of pair-wise feature similarity is used to 

measure concept similarity.   



 

 

 

Table 1: Datasets used in the simulations 

 

Label Source Data 

type 

Remarks 

Set A McClelland 

et al, 2004 

Unique  Whole set 

Set B McClelland 

et al, 2004 

Multiple Patterns: only animals 

Features: all – {‘has 

legs’} 

Set C Kemp et al, 

2008 

Multiple  Whole set 

 

A. Generalization 

   Figure 2 illustrates the contribution of local correlation to 

the categorization results of the Hubel Wiesel conceptual 

memory over Set A and Set C. We tested the model under 

different hierarchical structures, initialized by different 

number of modules and different number of features per 

module at the bottom of the hierarchy. As can be seen the 

local correlation operations, regardless of the structure of the 

hierarchy and the type of the dataset (unique structured or 

multiple structured), successfully biases the categorization 

towards a broad coherent categorization. The resulted 

categorization over both set A and set C corresponds to the 

broadest biological distinction of their patterns.  The 

categorization over set A reveals two basic kingdoms of 

patterns and the categorization over set C reveals two 

phylums of animals (Arthropods versus ~ Arthropods). 

Based on our results, when local correlation model is not 

included, the categorization of data is incoherent and also 

alternates per runtime. 

 

B. Categorization operations and computational 

parameters 

   In this section, we compare the categorization performance 

of the sum-weights and max-weight operations with respect 

to the effect of different computational parameters. Growth 

threshold [11] is a computational parameter used in the 

learning modules of our model. This parameter controls the 

growth of the neurons (categories) inside a module by 

applying a threshold on the distance values of the input 

patterns and the closest existing neuron weight in the 

module. If the corresponding distance value for an input 

pattern is larger than the threshold, a new neuron will be 

initialized in the modules. Therefore, lower values of growth 

threshold facilitate the generation of more number of 

categories and consequently finer distinctions within the 

corresponding module. 

    

   Figures 3 and 4 illustrate the effect of the growth threshold 

over set A and set C. The specific categories obtained by 

applying two different correlation operations and various 

thresholds to the multiple structured set B, is shown in 

Tables 2 and 3.   

 

 
Figure 2: (a) the most frequent outcome categorization of 

dataset A by local correlation model – successful 

categorization. (b) Illustrating the probability of successful 

categorization over set A, being obtained in a set of trials 

using sum-weights, max-weight and no correlation model 

under different hierarchies of learning. Each probability 

demonstrates the ratio of the number successful 

categorizations obtained over 10 trials carried out using a 

specific correlation operation and under specific hierarchy of 

learning(c) the most frequent categorization of dataset C by 

local correlation model – successful categorization. (d) 

Illustrating the probability of successful categorization over 

set C, being obtained in a set of trials using sum-weights and 

max-weight operations under different hierarchies of 

learning. Each probability is computed in the same way as 

explained in (b).  

 

   According to Figure 2.b, Figure 3, Tables 2 and 3, 

regardless of the hierarchical structure, type of data and 

growth threshold values,  the max-weight operation is always 

more significant than sum-weights in biasing the 

categorization. As can be seen, this conclusion is admitted by 

higher probability values reported for max-weight dominant 

categorizations in comparison with those reported for sum-

weights. 



 

 

 

 
Figure 3: The probability of categorization in Figure 2.a over 

dataset A. A comparison of sum-weights and max-weight 

under different growth thresholds (8 learning modules at the 

bottom layer) 

 

 
Figure 4: The probability of categorization in Figure 2.c over 

dataset C. using max-weight operation under different 

growth thresholds in different hierarchical structures. 

 

As can be seen in Figure 3, using sum-weights over a 

unique structured data, probability of getting broad 

distinctions decreases with the decrease of growth threshold. 

However, this probability stays robust when using max-

weight operation. On the other hand, according to Figure 4, 

applying max-weight over a multiple structured data, 

probability of getting broad distinctions does not stay robust 

against changes in growth threshold. It is also important to 

notice that in this case, the probability of getting broad 

distinctions does not necessarily decrease with the decrease 

of the growth threshold (Figure 4, 51 modules). This 

evidence, suggests that the geometry of the hierarchy is 

another effective factor that along with growth threshold and 

the structure of data influences the broadness and possibly 

coherence of the resultant categorization. 

 According to Tables 2 and 3, using max-weight operation 

over a multiple structured data the dominant categorization 

gets finer and more coherent (naturally descriptive of data) 

with the decrease of growth threshold. It is also noticeable 

that the same effect is not observed using sum-weights.  

 

C. Building hierarchical structures of data 

   In this section we use the max-weight in a top-down 

hierarchical manner to build a binary hierarchical structure 

of the data. Given a dataset, we first apply the model over 

whole data (the root node of the hierarchy) which results in 

the creation of several categories. Each of these categories - 

containing a portion of input patterns and a set of features 

with variant values among the patterns of the category - is 

Table 2: The effect of growth threshold on the quality of 

categorization biasing, using max-weight operation over 

dataset B (7 modules at the bottom layer). 

Growth 

threshold 

The most probable 

categorization (Dominant 

Categorization) 

Probability of 

the dominant 

categorization 

0.5 Categorization1 100% 

0.05 Categorization 2 60% 

0.005 Categorization 3 60% 

Categorization 1: (robin, canary, sparrow, sunfish, salmon, 

flounder, cod), (dog, cat, mouse, goat, pig, penguin) 

Categorization 2: (robin, canary, sparrow, sunfish, salmon, 

flounder, cod), (dog, cat, mouse, goat, pig), (penguin) 

Categorization 3: (sunfish, salmon, flounder, cod), (robin, 

canary, sparrow), (dog, cat, mouse, goat, pig), (penguin) 

 

Table 3: The effect of growth threshold on the quality of 

categorization biasing, using sum-weights operation over 

dataset B (7 modules at the bottom layer). 

Growth 

threshold 

The most probable 

categorization (Dominant 

Categorization) 

Probability of 

the dominant 

categorization 

0.5 Categorization4 50% 

0.05 Categorization 5 40% 

0.005 Categorization 6 40% 

Categorization 4: (sunfish, flounder, cod, cat, mouse, 

penguin, robin, canary, sparrow), (salmon, dog, goat, pig) 

Categorization 5:  (sunfish, salmon, flounder, cod, dog, cat, 

mouse, goat, pig), (robin, canary, sparrow, penguin) 

Categorization 6: (sunfish, salmon, flounder, cod, dog, cat, 

mouse, goat, pig), (robin, canary, sparrow, penguin) 

 

regarded as a new dataset (nodes branching from the root 

node). We apply the model over new datasets (subsets of 

patterns in a category) iteratively until the desired depth and 

breadth of the hierarchy in different branches is reached.   

The results of applying this procedure over dataset A, and 

dataset C are provided in Figure 6. It is important to note that 

changing the growth threshold of the model can change the 

resulted categorization and the number of categories (the 

number of branches stemming from the corresponding node). 

Therefore our model is not only limited to binary 

hierarchical structures and by changing the growth threshold 

of the model over a category (node) at level  and branch  of 

the hierarchy, we can change the emergent hierarchical 

structure stemming from that particular node. 

We assume that humans are capable of performing 

categorization and subsequently labeling over any given set 

of patterns represented in the format of feature data [3]. 

Since, category labels can always be organized into 

hierarchies [12], therefore regardless of the underlying 

structural form of the data [3], human mind is considered to 

be capable of fitting any given feature data into a 

hierarchical structure. For example, geographical places are 

naturally organized in a spherical structural form, while 

human mind is capable of projecting geographical data in 

hierarchical structure through developing and using concepts 



 

 

 

like continent, country, state, and city. In other words, we 

assume that one of the cognitive properties of human mind is 

the ability to build hierarchical structure for any given 

feature data which makes it able to develop abstract but not 

necessarily natural knowledge about its environment.  

   Furthermore, it can be discussed that the same set of 

entities can be represented within different structural forms 

each of which captures a different aspect of the relationship 

among the entities. For example, the temporal relationship 

among seasons, months, and weeks can be captured within 

cycles while their spatial relationship can be represented in 

hierarchies (Figure 5). Additionally, different spatial 

representations of the data within a given structural form 

reflect different levels of the abstraction of the patterns’ 

relationship. For instance, we can categorize the whole set of 

animal entities into predators and ~ predators or we can first 

categorize them into mammals, birds and subsequently 

categorize each of these categories into predators and ~ 

predators instances.   

 

 

 
 

Figure 5: Temporal (cycle) and spatial (hierarchy) 

relationships of seasons and months 

 

V. CONCLUSIONS 

 

   In summary, we propose an input integration framework 

for a Hubel Wiesel conceptual memory to bias the 

generalization process such that it contributes to the 

categorization of concepts in two ways. First, it increases the 

probability of obtaining a unique, coherent categorization. . 

Second, it improves the probability of achieving the broadest 

distinction (the quality of early concept differentiation due to 

progressive differentiation phenomena [1]) of the data. 

Assuming that changes in input integration framework of a 

hierarchical memory is one of  the sources of the progressive 

differentiation of concepts, further work is in progress to 

simulate the later developments of the progressive concept 

differentiation (detection of finer distinctions) on the basis of 

prior broad distinctions and smooth changes over the input 

integration framework. 

   Two operations were designed to perform integration: 

max-weight and sum-weights. The potential performance of 

these operations have been studied and compared under 

different situations including, different hierarchical 

structures, different growth thresholds, and different types of 

input data. These two operations are different in the way they 

handle the strength of biasing the categorization towards 

general features. The quality of features being general or 

specific is subject to continuous change upon receiving new 

inputs – new features and new patterns. Therefore, it is  

 
 

Figure 6: (a) Hierarchical structure of dataset A. (b) 

Hierarchical structure of dataset C 

 

 

questionable whether or not max-weight operation which 

gives a very high weight to the detected general features 

within a single entry might be a brain-like operation. 

Though, our simulations show that the max-weight operation 

produces more coherent results which are also consistent 

with the expected broad distinctions perceived in early 

childhood. May be in early stages of learning, an operation 

like max-weight is used to perceive broad distinctions and 

build the basic wirings in the brain. While, later a more 

moderate operation like sum-weights is used which does not 

bias the categorization as strongly as max-weight does.  

   Our model can be also used to fit any given feature data 

into a hierarchical structure and provides a possible 

explanation on how human mind assigns a hierarchical 

structure to a given data.  
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