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Models of Cross-Situational and Crossmodal Word
Learning in Task-Oriented Scenarios

Brigitte Krenn, Sepideh Sadeghi, Friedrich Neubarth, Stephanie Gross, Martin Trapp, Matthias Scheutz,

Abstract—We present two related but different cross-
situational and cross-modal models of incremental word learning.

Model 1 is a Bayesian approach for co-learning object-word
mappings and referential intention which allows for incremental
learning from only a few situations where the display of referents
to the learning system is systematically varied. We demonstrate
the robustness of the model with respect to sensory noise,
including errors in the visual (object recognition) and auditory
(recognition of words) systems. The model is then integrated
with a cognitive robotic architecture in order to realize cross-
situational word learning on a robot.

A different approach to word learning is demonstrated with
Model 2, an information-theoretic model for object- and action-
word learning from modality rich input data based on point-wise
mutual information. The approach is inspired by insights from
language development and learning where the caregiver/teacher
typically shows objects and performs actions to the infant while
naming what the teacher is doing. We demonstrate the word
learning capabilities of the model, feeding it with crossmodal
input data from two German multimodal corpora which comprise
visual scenes of performed actions and related utterances.

I. INTRODUCTION

IF robots are to interact naturally and learn from humans
in the future, mechanisms are needed to enable robots

to learn new activities based on observations and linguistic
instructions. Two questions regarding early word learning in
infants are of particular interest for our work on grounded
word learning for artificial agents: (1) the multimodal nature
of early infant language acquisition where visual activity and
linguistic cues are processed in parallel, (2) the types of
words that are learned first and why. Regarding the former,
see Gogate [1] who discusses the multisensory nature of
communication where speech, visual and motor stimuli concur.
Suanda et al. [2] show that parent-toddler communication is
rich in multisensory input where parent discourse is closely
tied to visual stimuli including what the parent has in her/his
hands, the child currently grabs and has in her/his focus of
visual attention (see also [3], [4], [5], [6]). Recent work by
Nomikou et al. [7] shows evidence for the relation between
caretakers’ action-language synchrony in the input to six
months old infants and the infants’ later production of verbs.

Regarding the latter question which words are learned
first, there is a broad discussion in the literature about the
acquisition of nouns and verbs in young infants. Recent
evidence suggests that very young infants across languages
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are already able to learn word-action mappings. Gogate and
Maganti [8] show that preverbal infants (8-9 months) of
a noun-friendly language background such as English map
novel words onto actions long before they talk. This effect
temporarily diminishes in postverbal infants (12-14 months)
learning a noun-friendly language. These findings contradict
earlier work such as Gentner [9], [10] who theorizes that
for English learning (a noun-friendly language) toddlers learn
nouns before verbs.

Gogate and Hollich [11] provide evidence for the following
effects in word learning during infants’ first three years: They
suggest that in the first year infants’ word mapping ability
(onto actions and objects) emerges from learning words for
referents that are most concrete or imageable. For instance,
Nomikou et al. [7] found that the verbs used by caregivers in
early interactions are tightly co-ordinated with ongoing actions
and frequently in response to infant actions. In addition,
there is evidence from studies on intention awareness and
compliance that infants from six months on are sensitive to
the intentionality of others’ actions, see for instance [12], [13],
[14].

Furthermore Gogate and Hollich explicate that in the second
year the dominance hierarchy of lexical categories in the
ambient language differently constrains the developing infants’
attention to nouns or verbs. This might explain the noun bias of
English learning toddlers identified by Gentner, or findings by
Childers and Tomasello [15] which showed that it was easier
for two-year-old English speaking children to recall new nouns
than new verbs and they also produced 3 times more nouns
than verbs. Evidence for the effects of the ambient language on
word learning also comes from earlier work. See for instance
Brown [16] for early verb learning in the Mayan language
Tzeltal, or Choi [17] for Korean.

In the third year, according to Gogate and Hollich, children
use what they have learned about their native language to make
guesses about new words. Children from noun-friendly lan-
guages overcome their noun-bias. Understanding of linguistic
cues leads them to flexibly learn the correct referents for verbs.

In addition, Chen et al. [18] found 6-8 month olds from
English and Mandarin language environments could discrim-
inate action changes but not object changes, whereas 17-19
months olds were able to discriminate both. Based on cross-
linguistic comparisons of Chinese-, English-, and Japanese-
speaking children, Imai et al. [19] provide evidence that
both universally shared cognitive factors and language-specific
linguistic factors matter for early word learning.

Various computational models of word learning have re-
cently been proposed to demonstrate the acquisition of word-
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to-meaning mappings. They typically either rely on co-
occurrence statistics of words and meaning elements, see for
instance Yu and Ballard [20], Frank et al. [21], or use infor-
mation theoretic measures to model the association between
words and referents. See for instance Kachergis et al. [22]
who use entropy as the core measure to model familiarity
and uncertainty for learning word-referent pairings, or Roy
[23] who uses mutual information for grounding objects.
While these works concentrate on noun referent learning, our
Model 2 demonstrates both noun and verb referent learning.
Another approach is presented in Alishahi and Fazly [24] who
use the knowledge about lexical categories (a combination of
semantic information derived from WordNet and morphosyn-
tactic category such as verb, noun) in cross-situational word
learning.

The approaches to word-referent mapping presented in the
present paper differ from the above mentioned research in
several ways. While [20], [21] are based on batch learning,
both approaches presented in Section III of this paper focus on
incremental learning where the lexicon is constantly updated,
when the system is provided with new input. Thus they are
comparable to [22] who also present an incremental model.

Model 1, the word-object mapping model described in Sec-
tion III-A builds upon [21], in particular, the joint acquisition
of the speaker’s referential intention and word meanings, and
transforms their approach into a mechanism for incremental
learning where only a few scenes need to be seen in order
to learn word-object mappings. Model 2 (described in Sec-
tion III-B), in contrast, focuses on modality rich input, com-
parable to what Yu and Ballard [20] and Frank et al. [21] call
social cues or Suanda et al. [2] address as crossmodal input.
While Yu and Ballard employ a statistical machine translation
model [25] for mapping between words and meaning, and
Frank et al. focus on a Bayesian approach to co-learning words
and referential intentions, an information-theoretic approach
to word-referent learning is realized in Model 2 utilizing
normalized pointwise mutual information as a key measure
and some additional weighting mechanisms in order to decide
which word-object or word-action link enters and remains
in the lexicon. In this respect, Model 2 is closer to Roy
[2003] or Kachergis et al. [2012] Roy demonstrated audio-
visual mappings between object classes and segments from
spontaneous speech in child-caregiver interactions. In contrast,
Model 2 goes beyond noun-object learning, however, using
data from adult teachering situations. Kachergis et al. tuned
their model towards replicating the learning effects resulting
from word learning experiments with adult humans presented
with pictures of unusual objects while hearing spoken pseudo
words (in each trial two pictures and 2 pseudowords were
presented). In contrast, both our models are geared to learning
word referent mappings from full-blown natural language
utterances related to visual situations. While Alishahi and
Fazly assume that children have already formed some lexical
categories each of which contain a set of word forms before
word learning starts, we do not assume any prior categorical
knowledge in either of our word learning approaches. In the
object-word learning experiments using Model 1 (described
in Section IV-A), a word learning situation comprises an

utterance and a scene represented by the list of visual objects.
In the action-word mapping experiments employing Model 2
(described in Section IV-B), each learning situation consists of
an utterance, an action label and labels for those objects which
are under visual attention. These are objects the speaker holds
in her/his hands, objects (A) which are moved, and objects
(B) next to which object A is moved.

While the input data for the learning experiments presented
in Section IV-A2 are obtained from real-world perceptual
inputs to a robot’s vision and speech recognition systems, the
input data used in Section IV-B stem from two multimodal
task corpora, the Action Verb Corpus (Section II-A) and the
MMTD Corpus (Section II-B). We consider situated task-
oriented communication in an teacher-learner setting as well
suited for modelling natural language learning in robots. This
is motivated by evidence showing that this kind of commu-
nication is rich in multimodal cues and thus comparable to
parent-young infant communication [2], [1].

II. MULTIMODAL TASK CORPORA

We start by introducing two corpora, the Action Verb
Corpus (AVC, [26]) and Dataset 1 of the OFAI Multimodal
Task Description Corpus (henceforth MMTD, [27])1 , which
are used by Model 2 (described in Section III-B) for learning
word-action and object mappings. The data sets are geared
towards modelling natural language learning in robots and
inspired by early human language learning research, in par-
ticular by evidence for modality richness of the input to the
infant’s learning system [2], [1], [3], [4], [5], [6]. Our data
comprise situated task-oriented communication where adult
human teachers show and describe in natual language simple
tasks such as moving a bottle next to a box and uttering
something like I take the bottle and put it next to the box. This
way, modality rich and highly redundant input to developing
and testing our artificial learning systems was produced.

AVC consists of multimodal data from 12 humans (8 male,
4 female) performing in total 500 simple actions (TAKE, PUT,
and PUSH). MMTD is a collection of tasks where a human
teacher arranges and rearranges pieces of fruit on a table, and
explains what (s)he is doing to a camera for an anonymous
learner to replicate the task. The corpus comprises scenes from
22 teachers resulting in 196 actions combined with related
utterances serving as input to the learning model.

Both corpora comprise audio and video data. In addition,
AVC also contains motion data including the 3D-coordinates
of hand, wrist and elbow joints, and object positions. While
the video recordings for the MMTD Corpus combine the
perspectives of the teacher and the learner, and a view of
the whole scene, the visual data in the AVC corpus are
restricted to the 1st person perspective, which is comparable to
a robot setting where the scene is perceived through the robot’s
eyes. Moreover, the corpora are annotated for information
such as transliterations of the utterances, part-of-speech tags,
related lemmas (base forms of words without inflectional
information), location of the teacher looks (eye-head gaze),

1The corpora can be downloaded from http://www.ofai.at/research/interact/
MMTD.html and http://www.ofai.at/research/interact/avc.html.
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specific object being moved, whether a hand touches an object,
whether an object touches the ground/table. The object-related
information is used for determining which objects in the visual
scene are in focus while an action is performed. All annotation
tiers are time-aligned using Praat2 for the transcription of the
audio and using Elan3 for aligning audio, video, and annotation
tiers. In the following sections, the set-ups for data collection
and the annotations for the two corpora are described.

A. Action Verb Corpus (AVC)

1) Setup for Collecting Data: Three objects were posi-
tioned on a table: a bottle, a can and a box. The user sat
(or stood) in front of the table wearing an Oculus Rift DK2
Virtual-Reality headset4 with a Leap Motion sensor5 for hand
tracking mounted, see Fig. 1 left side. A camera (Microsoft
Kinect) was positioned opposite the user and directed at the
table for object tracking. The user performed different actions
defined by visual instructions and verbally described what
he/she was doing. The user’s speech and performed actions
were recorded.

Fig. 1. Action Verb Corpus: Experimental Setup (left side). View through
the Oculus including the instructions (right side).

The Leap Motion is a stereo infrared camera which is
specialized on hand tracking. The Software Development Kit
(SDK) provided detailed information of the position of the
various joints of the user’s arm down to the separate finger
bones. We used the Leap Motion mounted on a VR headset
to obtain the best available tracking performance. The Oculus
Rift DK2 was worn by the user and provided the head pose of
the user. The head pose was used to transfer the tracking data
of the Leap Motion to a fixed coordinate system. In addition,
the instructions for the current task were also displayed in the
Oculus Rift above the camera images, see Fig. 1 right side.
In this manner, the user was able to look at the instructions
without moving his/her head, e.g. to look at printout versions
of the instructions. Additionally, the setup forced the user to
direct the Leap Motion to his/her hands because otherwise
he/she would not have been able to see what he/she was doing.
This behaviour was necessary for satisfying hand tracking
performance.

For object tracking, the red, green, blue (RGB) as well
as depth (D) data of the Kinect camera was recorded as
a ROS bag6 on a separate machine running Ubuntu. The

2http://www.fon.hum.uva.nl/praat/
3https://tla.mpi.nl/tools/tla-tools/elan/
4thttps://www.oculus.com/dk2/
5https://www.leapmotion.com
6A bag is a file format in ROS for storing ROS message data. Cf.

http://wiki.ros.org/Bags. The Robot Operating System (ROS) is a flexible
framework for writing robot software. Cf. https://www.ros.org/about-ros/.

object tracker from the V4R Library was used on the recorded
data.7 Models of the objects were created beforehand with the
RTM-Toolbox.8 The offline tracking enables the best possible
tracking results because the object tracker can be tuned for a
specific recording. Besides the position and orientation of the
object, two Boolean variables were saved: object is in contact
with the table and object is in contact with a hand. The former
is set automatically depending on the object’s position, the
latter is currently annotated manually.

2) Annotation: Apart from the (low-level) representations
resulting from the hand-arm and object trackers including per
frame the 3D positions of the joints in the elbow, wrist and
knuckles of the teacher’s left and right hand as well as the
object positions, the data were further annotated for: (i) two
kinds of transliteration: the one as close as possible to speech
preserving speech related signals in the utterance such as
hesitations, interruptions, and corrections; the other one close
to written text in order to apply computational linguistic tools
such as part-of-speech taggers, stemmers, phrase chunkers and
parsers, which are typically trained on written text; (ii) part-of-
speech tags; (iii) canonical forms of inflected words (lemmas);
(iv) hand touches object; (v) object touches surface/ground;
(vi) object A moves next to object B. Except for the translit-
erations and whether a hand touches an object, all tiers were
automatically annotated and manually corrected.

B. The OFAI Multimodal Task Description Corpus (MMTD)

1) Setup for Collecting Data: The teacher stood in front
of a table with the following objects placed on it: an empty
sheet of paper and a plate with three pieces of fruit – a
banana, a pear and a strawberry, see Fig. 2. The task for the
teachers was to take the pieces of fruit one after the other
from the plate and arrange them on the piece of paper, and
describe what they were doing to the camera (cam 1) for a
prospective listener/learner. As regards examples for action
related utterances see: ich nehme dann die Erdbeere (’I take
then the strawberry’, sample utterance related to a TAKE-
action) und lege sie vor mir auf die rechte Seite neben die
Banane (’and put it in front of me on the right side next to
the banana’, sample utterance related to a PUT-action).

  

Teacher

kinect

cam
 1

cam 2

ca
m

 3

Fig. 2. Schematic
setup of Task 1 of the
MMTD Corpus.

2) Annotation: The data had been originally annotated for
transcriptions and transliterations of the teacher’s utterances,
parts-of-speech, eye gaze and gestures of the teacher, and
for the specific objects present on the scene referenced in

7http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/v4r-library/
8http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCDS.2020.2995045

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

thttps://www.oculus.com/dk2/
https://www.leapmotion.com
http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/v4r-library/
http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm/


IEEE TCDS SPECIAL ISSUE ON LANGUAGE LEARNING IN HUMANS AND ROBOTS 4

the teacher’s utterance. For the present word learning exper-
iments, additional information was manually annotated, i.e.,
whether the left or right hand of the teacher touched an
object (touchRightHand, touchLeftHand); whether an object
touched the ground/table (touchGround); whether object A
was moved next to object B (moveObject). The data were
manually annotated based on the synchronised input streams
of the video cameras (cam 1 to cam 3) and the recordings of
the utterances. As illustrated in Fig. 3 mentioning an object in
speech almost always correlated with an action that involves
the object. Furthermore, if we identify an action such as TAKE
as involving touch by hand and loss of connection to the
ground, and PUT as movement and gain of connection to
ground with a potential placement near another object, we
observed that these feature combinations representing basic
actions co-occur with the corresponding verbs in the linguistic
description.

The present data relate to stimuli used in developmental
psychology for studying word-referent learning in early child-
hood. See for instance [18], [28], [8] who pair verbal stimuli
with situated action to investigate noun and verb learning.
Whereas these studies work with nonsense words in highly
controlled laboratory settings, Nomikou et al. [7] use a more
naturalistic setting of mothers interacting with their child while
changing diapers in order to investigate the relationship be-
tween action-language synchrony and verb learning. Analysing
the multimodal data, they found amongst others that the verbs
the mothers used in the interaction with their child were tightly
coordinated with the ongoing action. These findings in turn
strenghten our decision to use in our learning experiments the
kind of task description data available from MMTD and AVC
where action and action-related utterance are tightly coupled.

Fig. 3. MMTD: Sample annotation and crossmodal relations; circles and lines
indicate relations between modalities.

III. MODELS OF OBJECT AND ACTION LEARNING

In this section, we present two models of object-word learn-
ing and action-word learning, focusing on different aspects of
the learning models and the input being processed.

First, we present an incremental model for cross-
situational word-referent learning for words with concrete
object references (Model 1). The specialty of the model is
that it distinguishes between referential and non-referential use
of words. A word is referential, when it refers to an object
present in the current situation and non-referential otherwise.
For illustration, see the sequence of situations in Table I which
allow the model to incrementally learn mappings between the
word knife and the object KNIFE and the word cup and the
object CUP from only a few varying situations (henceforth

scenes). In section III-A, the model details are presented. The
model is then examined with respect to its robustness to noisy
input from speech recognition and computer vision (section
IV-A1), embedded in a robot architecture and run on a PR2
robot (section IV-A2).

input situation utterance visual scene
situation 1: look at the knife KNIFE, CUP, BOWL
situation 2: knife KNIFE, BOWL
situation 3: look at the knife KNIFE, CUP, BOWL
situation 4: cup KNIFE, CUP
situation 5: look at the cup CUP, BOWL
· · · · · · · · ·

TABLE I
WORD-OBJECT LEARNING FROM VARYING OBSERVATIONS OF

INTENTIONAL LANGUAGE USE.

Second, we present a model for action learning from
modality rich input data (Model 2, Section III-B). While
Model 1 uses referential intention as key concept, and is geared
towards learning from only a few varying situations, Model
2 focuses on learning from highly redundant input, whereby
redundancy comes from modality richness and repetitiveness
of the data. Fig. 3 illustrates crossmodal relations. The AVC
corpus comprises 78 basic TAKE, PUT and PUSH situations,
and MMTD comprises 202 basic TAKE and PUT situations,
each situation combining visual action and related utterance.
See Table II for sample input situations. As each utterance
relates to an action in the visual scene, utterance, action label
and labels for the objects in the visual focus are input to the
learning algorithm.

AVC
Visual Scene Utterance

TAKE TEAHORIZONTAL ich nehme die Schachtel
(I take the box)

PUT TEAHORIZONTAL PRINGLES und stelle sie links neben die Dose
(and put it to the left of the can)

TAKE KETCHUP ich nehme die Flasche
(I take the bottle)

PUT KETCHUP PRINGLES und stelle sie rechts neben die Dose
(and put it to the right of the can)

PUSH PRINGLES KETCHUP ich schiebe die Dose vor die Flasche
(I push the can infront of the bottle)

PUSH KETCHUP TEAHORIZONTAL ich schiebe die Flasche hinter die Schachtel
(I push the bottel behind the box)

PUSH TEAHORIZONTAL KETCHUP ich schiebe die Schachtel neben die Flasche
(I push the box next to the bottle)

MMTD
Visual Scene Utterance

TAKE BANANA PLATE und ich nehme jetzt die Banane
(and I take now the banana)

PUT BANANA PAPER und lege sie in die Mitte vom Blatt
(and put it in the middle of the sheet)

TAKE STRAWBERRY PLATE dann nehme ich die Erdbeere
(then I take the strawberry)

PUT STRAWBERRY BANANA und lege sie neben die Banane
(and put it next to the banana)

TAKE STRAWBERRY PLATE und dann nehme ich die Erdbeere vom Teller
(and then I take the strawberry from the plate)

PUT STRAWBERRY BANANA und packe sie auch auf das leere Blatt neben die Banane
(and put it too on the empty sheet next to the banana)

TABLE II
SAMPLE INPUT SITUATIONS AS DERIVED FROM AVC AND MMTD:

VISUAL SCENE AND RELATED UTTERANCE
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A. Model 1: Cross-Situational Object-Word Learning
Here, we present the details of our current word learning

model (Model 1) which is limited to learning words which
refer to concrete objects in the scene. The input to the model
are word learning situations. Each of which consists of an
utterance-scene pairing where the utterance is an un-ordered
set of words and the scene is a list of objects present in
the scene. Building on Frank et al. [21], the learner assumes
that in each situation, the teacher uses the generative process
illustrated in Fig. 4 to produce an utterance (Ws) correspond-
ing to the current scene (Os) and using a context appropriate
portion (L) of the full lexicon to generate the referential words.
Lexicon refers to a many-to-many mapping between words and
objects, and a referential word refers to a noun with a concrete
object referent. In each situation, the model has to infer which
words are referential and what object they refer to. Referential
intentions of the teacher (Is) which refer to the objects that
are present in the scene and which the teacher is talking about,
determine the space of possible referents for each referential
word in the utterance (Ws).

Fig. 4. The graphical model describing the gen-
eration of words (Ws) from the intention (Is) and
lexicon (L), and the generation of the intention
(Is) from the objects present in the scene (Os),
where s indexes the situation. The plate indicates
multiple copies of the model for different situations
(utterance-scene pairs). Image from [21].

In each situation, the model uniformly samples a subset
from the power-set of all the objects present in the situation
(Os) representing the referential intention(s) of the teacher
(Is). Each word in the utterance is assumed to be referential
with probability γ and non-referential with probability 1− γ.
The probability of non-referential use (PNR) of a referential
word (words in the model lexicon) is set to κ < 1 (to penalize
the non-referential use of referential words), and is set to 1
for non-referential words. The probability of referential use of
a referential word in reference to a particular object (PR) is
the probability of the word being chosen uniformly from the
set of all words linked to that object in the lexicon.

In each situation the model tries to reverse the generative
process described in Fig. 4 to discover a context-appropriate
portion of the full lexicon used by the speaker, where context
refers to the entities (words and objects) in the current situa-
tion. In doing so, in each situation, the model infers a mini-
lexicon as a context-appropriate portion of the full lexicon. The
model uses its current knowledge of the full lexicon and co-
occurrence statistics accumulated across situations for hypoth-
esis generation (generation of hypothetical mini-lexica) and
hypothesis testing (inferring the best mini-lexicon). The best
mini-lexicon found in each situation then will be integrated
into the full lexicon inferred by the learner. These steps will
be described in more detail in Section III-A1.

Inferring the best mini-lexicon in each situation, requires
finding the MAP (maximum a posteriori) mini-lexicon by
marginalizing over all possible referential intentions, since Is
is unobserved. The model finds the MAP mini-lexicon accord-
ing to the Bayes equation and the probability distribution that

it defines over unobserved mini-lexica (L) and the relevant
corpus of situations (C) including the current situation as well
as the extracted ones from the lexicon (which share some
entity with the current situation). The extracted situations are
made of the existing (in the lexicon) mappings for each word
and object in the current situation.

P (L|C) ∝ P (C|L)P (L) (1)

We use P (L) ∝ e−α·|L| serving as a soft mutual exclusivity
constraint to produce a preference for one-to-one mappings
in the mini-lexicon inferred in each situation. Marginalizing
over all possible intentions in each situation we can rewrite
the likelihood term P (C|L) as:

P (C|L) =
∏
s∈C

∑
Is⊆Os

P (Ws|Is, L)P (Is|Os) (2)

Assuming that P (Is|Os) ∝ 1 and that the words of the
utterance are generated independently, we can rewrite the term
P (Ws|Is, L) as:

P (Ws|Is, L) =
∏
w∈Ws

[ γ ·
∑
o∈Is

1

|Is|
PR(w|o, L)+

(1− γ)PNR(w|L)]
(3)

We employ the equations above in each situation, to find the
MAP mini-lexicon which describes the generation of situations
in C, including the current situation as well as the relevant
ones extracted from the full lexicon. We use “lexicon” and
“full lexicon” interchangeably in the rest of this paper.

Our model departs from the previous model which is fully
Bayesian and a batch learning algorithm assuming full access
to all observations [21]. Our learning algorithm is incremental,
memory-limited (memory of observations) and only locally (in
the context of single situations) Bayesian. A lack of access to
all datapoints is not a barrier for convergence of our learning
algorithm [29], [30], [31], [32]. The number of computations
upon receiving a new situation to update the lexicon depends
on the input situation and the number of learned mappings for
the existing items (words and objects) in the current version
of model lexicon. Since the model is memory-limited, the
number of such word learning situations is limited and since
the number of items in an utterance and scene are limited too,
the number of computations remain fixed as the size of data
grows, allowing for scalability as well as online processing of
data.

1) Incremental Learning Algorithm: We use the incremen-
tal and memory-limited learning algorithm proposed in [29]
which remains tractable as the size of data grows. The learning
algorithm is truly incremental as it sees each situation only
once and performs no iteration over data. Furthermore, its
memory of past observations is limited to the word-object
mappings stored in the lexicon. The algorithm uses context-
appropriate word-object mappings available in memory for
hypothesis generation (generation of hypothetical mini-lexica)
and hypothesis evaluation (inferring the MAP mini-lexicon).
This allows for quick hypothesis generation and hypothesis
testing while keeping the Bayesian inference tractable as
the amount of data grows. Bayesian inference to infer the
MAP mini-lexicon, is only applied locally with limited but
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relevant evidence available in memory (relevant to the current
observation). Our learning algorithm has two components:
(1) inferring the MAP mini-lexicon in each situation, (2)
integrating the new mini-lexicon in the current full lexicon,
while applying mutual exclusivity constraints. The process of
inferring the MAP mini-lexicon, subsequently has two distinct
components: (1) generating mini-lexicon proposals, and (2)
scoring the generated mini-lexica. Scoring is performed by
computing the relative posterior probability of the mini-lexicon
proposals based on Equation (1). Generating mini-lexicon
proposals is guided by stochastic search techniques.

To summarize, in each situation, the learning algorithm
infers a mini-lexicon as an approximation to the context-
appropriate portion of the full lexicon used by the speaker.
This mini-lexicon is then integrated into the model’s current
full lexicon by adding the mappings in the best mini-lexicon
to the lexicon, and removing the existing alternative mappings
from the lexicon, applying a strict mutual exclusivity constraint
between situations. We also apply a soft mutual exclusivity
constraint, in each situation, through the use of the mini-
lexicon prior probability function which is exponential in the
size of mini-lexicon and produces a preference for smaller
mini-lexica. For more details about the learning algorithm,
refer to Sadeghi et al. [29]. To learn more about the application
of the same learning algorithm in extended versions of the
graphical model used in the present paper refer to Sadeghi
and Scheutz [33], [30].

B. Model 2: Crossmodal Action-Word Learning – Actions and
Related Objects

In the following, we present a model of crossmodal word
learning (Model 2) where action verbs and words referring to
the objects involved in the actions are incrementally learned
from modality rich input.

1) Data Preparation: The input data for the action verb
and action plus object learning experiments presented in
Section IV comprise a series of situations. Each situation may
consist of one or two events with a different action (e.g.,
schieben “push” alone, or nehmen “take” with subsequent
stellen/legen “put”). Taking the situation as a multimodal
perceptual frame, it makes sense to use the term event for
a single occurrence of an action that can be perceptually
individuated and aligned with a unique utterance. An event
comprises an action together with all objects involved in
that action. To identify the multimodal sequences, i.e., time
series on the annotation tiers related to one action/event, the
description episodes of MMTD and AVC were automatically
segmented and aligned.

Such an alignment is not straightforward since in MMTD
teachers often start to describe the action/event before actually
performing it. Segmentation in MMTD and AVC can be
facilitated through speech pauses, and as an idiosyncrasy of
MMTD – which originally was not designed for word learning
– by identifying connectors such as und (“and”) or dann
(“then”). The algorithm is attentive to actions and speech
chunks which at least temporally overlap with the action
sequence. Based on pauses in the speech signal and temporal

co-occurrence between speech chunks and performed action,
the algorithm finds the sequence of speech chunks that should
be aligned with the current action. For a discussion of the
alignment of speech and action (acoustic packaging) in infant-
directed speech and beyond see [34]. For more details on the
segmentation and alignment process applied to MMTD and
AVC see [26].

A scene in itself is a list of expressions referring either to
objects or actions or both. Thus, by defining different types
of scenes, we are able to model different learning strategies.
The result of the alignment process is a list of utterance-scene
pairs, comprising the whole corpus.

2) A Model for Incremental Action Learning: Assuming
that the correlations between words and objects or actions
occurring in the same utterance-scene pair are sufficiently
high, we designed a word-learning algorithm that sequentially
processes each event and checks if word-referent pairs can
be assigned to the lexicon. In this manner, the lexicon is
incrementally filled with entries, but if a word is mapped to
multiple referents or a referent is mapped to multiple words,
certain links will also be “unlearned”, and hence removed from
the lexicon.

The key measure for assessing the significance of a given
word-referent pair (a ‘link’) is pointwise mutual information
(pmi). In order to be able to use this value for comparisons
between concurring links, one has to employ the normalized
pmi (the quotient of pmi and the self-information h with
h(w, r) = log2

(
1

p(w,r)

)
). We also tested the potential of the

conditional probabilities p(w|r) and p(r|w) to support the
decision whether a link should be added to or expelled from
the lexicon. These measures, however, were not useful.

For each event, the full set of potential links is created
by combining each word (unified list, lowercase) with each
referent from the scene (object, action or both), and the
statistical values (npmi) are updated for these links.

The algorithm proceeds as follows: For all current referents
that are linked to a given word, if the difference between the
link with the highest npmi and links with lower npmi values
is greater than a given threshold (par.bdif , default: 0.05), the
first link will get an extra count on its ‘boost’ value, the others
on their ‘decline’ value.

In a second step, for all referents that have occurred so far,
the links to words of the current utterance are re-evaluated.
Similarly to the ‘decline’ value, if a link is outranked by
another link and the difference between npmi values is greater
than the given threshold (par.bdif ), an extra count on its
‘exclude’ value is given. While ‘decline’ compares links on
the basis of concurring referents, the ‘exclude’ value stores
information of co-occurrences between words. There is an
option to inhibit the ‘exclude’ value if the two words predom-
inantly co-occur as bigrams (skipping over functional words,
such as articles or the preposition von “of”) in a significant
number of co-occurrences (e.g., Mitte [von dem] Blatt “center
[of the] sheet”; parameter: par.minbigr, default: 0.25). If the
conditions listed below are met, this particular link is included
in the lexicon.
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• The npmi value is greater than a given absolute threshold
(par.npmilex, default: 0.25), and

• the ratio between the sum of the ‘decline’, ‘exclude’
and ‘boost’ values is smaller than a given threshold
(par.boostlex, default: 0.6).

On the other hand, links already in the lexicon need to be
constantly re-evaluated. In each processing step, the links per-
taining to the event (that have updated values), are examined,
and if several conditions are met, the link is removed from the
lexicon. This is important since especially at the beginning of
the learning procedure, erroneous links have a higher chance
to enter the lexicon. The conditions are the following:
• There are concurrent links, and
• the npmi value is smaller than a given threshold

(par.npmilex, 0.25), and
• the ratio between the sum of the ‘decline’, ‘exclude’ and

‘boost’ values is equal or greater than a given threshold
(par.boostlex).

The model not only learns what the best candidate link
is, but it is also able to model multiple connections between
words and referents. Two words can refer to the same object
(or action). This is typically the case with synonyms (e.g.,
‘bottle’, ‘flask’), but also hypernyms can be used instead of
a given word (e.g., ‘that thing’). Additionally, more than one
word can be used to refer to an object, e.g. in MMTD, Blatt
Papier – ‘sheet of paper’ consisting of a measure noun (Blatt,
‘sheet’) and a common noun (Papier, ‘paper’). Hypernyms, by
definition, refer to several objects (or actions).

IV. OBJECT- AND ACTION-WORD LEARNING
EXPERIMENTS

In this section, we present a number of experiments on
object- and action-word learning with varying input data,
and discuss their results. We start with object-word learning
experiments to demonstrate the robustness of Model 1 (Section
III-A) to sensory noise such as noise in vision (e.g., errors in
object recognition) and noise in speech (e.g., misrecognition
of words), cf. Section IV-A1. Next, we show how the model
can be embedded in a subset of the cognitive robotic DIARC
architecture [35], and demonstrate how a robot, using the
model, can learn new words through real-time interactions
with a human teacher. (A high-level view of the DIARC
configuration used can be seen in Fig. 5). This is followed
by experiments with Model 2 on action word learning from
crossmodal input data based on inputs from AVC and MMTD,
where the input data to the learning model presented in
Section III-B are varied as follows: Full form utterance and
related actions and objects (represented as concept labels) are
presented to the learning system. This is contrasted with input
to the learning system where utterances are paired with either
action labels or object labels alone but not both.

A. Model 1: Experiments in Object-Word Learning

1) Sensory noise evaluation: We examined the robustness
of the model to noise in vision and speech recognition by
systematically adding noise to the inputs from these two

components and evaluating the mean F-score of the best
lexicon found by the model, averaged over 10 runs. For the
purpose of comparison, we implemented several incremental
models of cross-situational word learning (association fre-
quency (Equation 4), conditional probability P (object|word),
conditional probability P (word|object)) mainly to provide a
baseline expectation for the results produced by an incremental
model.

P (word, object) =
Count(word, object)∑

i

∑
j Count(wordi, objectj)

(4)

The best lexica found by the non-Bayesian models consisted
of a number of word-object pairs with the highest heuristic
(e.g., P (object|word)) score. We varied the number of links
included in the best lexicon found by these models and re-
ported the lexicon with the best F-score. Fig. 6(a) demonstrates
the behaviour of the model under noise. Fig. 6(b), Fig. 6(c),
and Fig. 6(d) demonstrate the behaviour of non-Bayesian
incremental models under noise. As can be seen, our model
exhibits more robustness to noise compared to other models,
as the least mean F-score value reported for our model (0.76)
is much higher than that of other models (0.28, 0.55, 0.2).

2) Proof of concept embodied model: For this experiment
we embedded our model in a subset of DIARC architecture
[35] and replaced the simulated speech recognition and visual
object detection components used in the sensory noise model
evaluations with components capable of processing raw speech
[36] and vision data. Additionally, we integrated a speech
production component (allowing the robot to provide verbal
feedback) and a robot manipulation component (allowing the
robot to point to target objects in the environment).

The robot demo, available at https://vimeo.com/210659339,
illustrates two types of interactions between the embodied
model and the human teacher: (1) training and (2) testing.
Testing interactions are marked with the word “point” at
the start of the utterances made by the human interactor
(e.g., “point to the X”) and are used to examine the robot’s
knowledge of words (e.g., the word X). If the robot has at
least one word-object mapping for the word X in its lexicon,
it uniformly draws one of those mappings and points to
the object in the drawn mapping while uttering “here it is”.
Otherwise, the robot responds “I don’t know what that is”.
The robot uses other interactions (training interactions) to
update its lexicon. The robot starts with an empty lexicon
(no known word-object mappings). The human interactor then
starts to teach new words through a series of word learning
situations (utterance-scene pairs), using single word utterances
(e.g., “knife”) as well as complete sentences (e.g., “look at
the knife”). The human interactor changes the scene by taking
away and putting back objects on the table. See also Table I
for sample inputs.

Fig. 5. High-level
DIARC architecture
for proof-of-concept
demonstration. (‘Rec’
stands for Recogni-
tion, ‘Prod’ for Pro-
duction.)
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Fig. 6. The heatmap of mean F-score values (averaged over 10 runs) for the lexica found by (a) the incremental model [29], (b) the association frequency
model, (c) the conditional probability P (object|word) model, and (d) the conditional probability P (word|object) model, under different noise conditions.

B. Model 2: Experiments in Object- and Action-Word Learn-
ing

In this section, results from crossmodal word learning
experiments mapping verbs onto action concepts and nouns
onto action related objects are presented. The respective gold
standard lexica comprising the mappings between lexical form
and concept (action or object) label are listed in Table III.9

The mappings were extracted from the manual annotations of
action-related speech and visual action in MMTD and AVC.
Examples for lexical forms are nimm, nehmen, nehm, nehme
(take). The related concept label for each of these forms is
TAKE. The gold standard lexica comprise only word-concept
mappings for those lexical forms that recur at least three
times in the input to the learning system, as the model is
not designed to learning from singletons. Therefore the gold
standard lexicon for AVC comprises 3 verb-action mappings
and 3 noun-object mappings, whereas in MMTD there are 7
verb-action and 8 noun-object mappings. It assumes that each
inflected form is learned as a word in its own right, in order to
avoid employing an external lemmatizer (a computer program
that reduces inflected word forms to their base form).

In the objects only condition, the multimodal input to the
learning system comprises pairs of utterance and a list of
objects which are in the visual focus of the speaker, i.e.,
the object(s) which are manipulated by the speaker, while
explaining the current activity, or which are landing sites or
close to landing sites of the moved object. In other words,
the input comprises an utterance and only objects which are
in the visual field of attention. See for instance the input
pair <und ich nehme jetzt die Banane, BANANA PLATE>
where BANANA represents the object taken and PLATE the
object/location from which the banana is taken. In the actions
only condition, the input comprises pairs of utterance and
action label, <und ich nehme jetzt die Banane, TAKE>. In
the action+object condition, the input consists of the utterance,
and the labels representing the action and the objects in visual
focus, <und ich nehme jetzt die Banane, TAKE BANANA
PLATE>. See Table II, for more examples of word learning
situations comprising action, object(s) and utterance. For all
conditions, ten learning runs have been performed randomly
changing the succession of input sequences, and the results
are then averaged per condition. The respective mean values

9For a description and discussion of ”gold standard” in corpus annotation
see [37].

AVC
actions objects

nehme – TAKE dose – PRINGLES
schiebe – PUSH flasche – KETCHUP
stelle – PUT schachtel – TEAHORIZONTAL

MMTD
actions objects

lege – PUT banane – BANANA
legen – PUT birne – PEAR
gelegt – PUT erdbeere – STRAWBERRY

nimm – TAKE blatt – PAPER
nehmen – TAKE blattes – PAPER
nehm – TAKE papier – PAPER
nehme – TAKE papiers – PAPER

teller – PLATE

TABLE III
GOLD STANDARD LEXICA FROM AVC AND MMTD.

for precision, recall and F1-score are presented in Table IV.
In order to assess the required number of input sequences to
stabilize the lexicon, Fig. 7 and 8 show plots of mean F1-
scores (individual and averaged runs) against the number of
events seen by the learner.

AVC (78 input scenes) MMTD (202 input scenes)

condition precision recall F1-score precision recall F1-score

action 90.0% 100.0% 0.943 39.5% 27.2% 0.321

(±12.9%) (±0.0%) (±0.074) (±6.0%) (±4.5%) (±0.050)

object 100.0% 100.0% 1.000 63.7% 46.2% 0.533

(±0.0%) (±0.0%) (±0.000) (±10.6%) (±6.0%) (±0.066)

action + 88.6% 100.0% 0.938 59.4% 38.0% 0.463

object (±6.0%) (±0.0%) (±0.032) (±2.1%) (±3.2%) (±0.028)

TABLE IV
RESULTS FROM LEARNING WORD-ACTION AND WORD-OBJECT MAPPINGS

FROM CROSSMODAL INPUT DATA DERIVED FROM AVC AND MMTD.
LISTED ARE THE MEAN VALUES AND STANDARD DEVIATIONS (IN

PARENTHESES) FROM 10 LEARNING-TESTING RUNS PER MODEL AND
CONDITION. THE F1-SCORE IS THE HARMONIC MEAN OF PRECISION AND

RECALL, F1 = 2 ∗ precision∗recall
precision+recall

.
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Because of the random selection of input sequences per
run the results differ slightly even after averaging over 10
runs. We ran Model 2 over several packs of 10 runs re-
sulting in persistently better lexical learning from AVC than
from MMTD. This result can be partially explained by the
differences in lexical variation in the input to learning (in
other words, in the training corpora). The utterances in the
AVC corpus comprise only one lexical form for each action
and object referent, whereas in MMTD there are three lexical
forms referring to PUT-actions, four for TAKE-actions, two
different words, Blatt, Papier (sheet, paper) with two different
lexical forms each referring to the sheet of paper being part
of the task setup (blatt, blattes; papier, papiers). See Table
III for a summary of all lexical forms referring to the actions
and objects in the AVC corpus and in MMTD. If there are
more potential links between words and a particular concept,
then the scores for each mapping decrease and leave room for
erroneous mappings. See for instance the relation between the
personal pronoun sie “her/it”, and the concept PUT, which is
erroneously learned from MMTD, but not from AVC, even
though in both data sets PUT actions frequently co-occur with
sie (64 times in a total of 106 PUT actions in MMTD and
24 times in a total of 24 PUT actions in AVC). This situation
arises due to the combination of TAKE and PUT actions in both
corpora, resulting in utterances such as ich nehme die Erdbeere
und lege sie neben die Banane (‘I take the strawberry and put
it next to the banana’, MMTD) or ich nehme die Schachtel
und stelle sie links neben die Dose (‘I take the box and put it
to the left of the can’, AVC).

While in AVC a PUT action is always accompanied by
one and the same word/verb lege (put), PUT in MMTD is
accompanied by a variety of verbs including lege (62), empty
verb (8), platziere (7), packe (6), kommt (4), platziert (3), zu
platzieren (3), tu (2), absetzen (1), tun (1), zu liegen kommt (1),
sich ergibt (1), sein (1), liegt (1), verschiebe (1), vertauscht
(1), ordnen (1). In addition, out of 64 occurrences of sie in
total in MMTD, 62 co-occur with a PUT action, whereas out
of 33 occurrences of sie in total in AVC, 23 co-occur with a
PUT action, 9 with a PUSH action, 1 is an alignment error.

This results in significantly different npmi values for the
primary candidate lege and the personal pronoun sie. In
MMTD, these are roughly on par, which prohibits the algo-
rithm to decide which of the two is the correct one. In AVC
the npmi value for lege is almost twice as high as the one for
sie. In that case the latter is assigned an ‘exclude’ penalty for
its link to the PUT action, which prohibits (correctly) this link
from being added to the lexicon.

Another problem for learning object-word mappings in
MMTD was the more complex linguistic realizations for
locations. For instance: The teachers very often described that
they would put a piece of fruit in the center of the sheet of
paper (in die Mitte des Blattes, or in die Mitte vom Papier,
etc.). Therefore, Mitte “center” acquires the highest npmi
values with PAPER. Blatt “sheet” receives a lower npmi value
and also enters the lexicon, but Papier “paper” does not. This
problem was circumvented in AVC where the users were asked
to move objects by taking one and putting it next to another
one. Another possibility to avoid the effect is to ask users to

use utterances such as “I take X and put it there”. We used
this kind of utterances in learning experiments that ran under
live conditions on a Pepper robot [38].

V. SUMMARY AND CONCLUSION

In this paper, we presented and assessed two related but dif-
ferent models of incremental word learning. Model 1 realizes
an incremental version of the Bayesian approach for cross-
situational word-referent learning for words with concrete
object references introduced in [21]. The model focuses on
the joint acquisition of referential intention and word meaning
from only a few varying situations. Model 2 implements an
information-theoretic approach to learning from modality rich
input data based on normalized pointwise mutual information.
(For a discussion of variants of pointwise mutual information
see [39].) The proposed model focuses on learning mappings
of actions onto verbs and of action-related objects onto nouns.
To do so, highly redundant input data were used, whereby
redundancy came from modality richness and repetitiveness
of the data. The data input to the learning model was derived
from two multimodal corpora, the Action Verb Corpus (AVC)
and MMTD. All learning scenarios were based on situated
task-oriented communication in teacher-learner settings. Using
this kind of data for learning was inspired by research on
early infant learning, where parent-child interactions produce
modality rich and redundant input, for instance, when parents
name objects their infants currently interact with; see for
instance [34], [2], [1], [3], [4], [5], [6]. While our data
stem from adult interactions, we are aware that child-directed
speech has many more facets to it than producing massively
redundant input to the learning system, [40], [41].

We have illustrated the difference in capacities of the two
proposed models in a number of experiments. We have demon-
strated the robustness of Model 1 with respect to sensory
noise such as noise in vision (e.g., errors in object recognition)
and noise in speech (e.g., misrecognition of words), based on
simulated data, and demonstrated how a robot (PR2), using
the model (embedded in a subset of the cognitive robotic
DIARC architecture), can learn new words through real-time
interactions with a human teacher. We have tested Model 2
with crossmodal input data from AVC and MMTD, whereby
the input data to the learning model varied as follows: (i) full
form utterance and a list of related actions and objects in visual
attention; (ii) utterance paired with action labels only; (iii)
utterance paired with object labels only. The results showed
that for Model 2 lexical learning from AVC was easier than
learning from MMTD, i.e., the values for precision, recall and
F1-scores were persistently higher for AVC than for MMTD.
We attribute this to differences in complexity of the utterances
accompanying the visual scenes, whereby MMTD shows more
lexical variation, – several word (forms) refer to a single
object or action, it has on average longer sentences than AVC
(8.6 versus 5.9) and also a higher structural complexity – for
instance the linguistic realisation of location expressions such
as put something in the middle of the sheet of paper. Moreover,
it has elliptical constructions where action verbs are missing.
All this impedes co-occurrence-based word-referent mapping.
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Fig. 7. Model 2 learning from AVC: Incremental plots F1 (upper row) and mean values (lower row) for objects and actions only, and for actions plus objects.
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Fig. 8. Model 2 learning from MMTD: Incremental plots F1 (upper row) and mean values (lower row) for objects and actions only, and for actions plus
objects.

In future research, to overcome the sensitivity to full forms
versus lemmas, mechanisms for exploiting the similarity be-
tween morphologically related word forms need to be de-
veloped and integrated in the learning algorithms. Currently,
we are working on expanding the word learning frameworks
to capture syntactic information. First, the models need to
differentiate nouns from verbs in parallel with the distinction
between action and object referents obtained from the mul-
timodal input. On the basis of a verb-noun distinction, word
order can be taken into account. For example, Sadeghi and
Scheutz [33], [30] have already demonstrated that Model 1
can be expanded to allow for learning word referents as well
as language word order. The knowledge of word order allows
the learner to parse the input sentences and to infer a mapping
from concepts to grammatical functions, in order to understand
who has done what to whom. Furthermore functional words
such as articles, pronouns, auxiliary verbs etc. need to be incor-
porated into the models. Under the assumption that languages
have closed class lexica of functional words (or morphemes in
the case of agglutinative languages), these items will no longer
behave as distractors in the learning procedure, but enhance
the model by indicating the category of a syntactic phrase
(e.g., articles indicate noun phrases), serving as place-holders
for referential expressions (pronouns) or help in identifying

slots within the syntactic structure (auxiliaries). From this we
not only expect a substantial improvement for the learning
algorithms, but also an essential advance in modelling learning
procedures on the basis of natural language input.
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